Shimin Yang, Yuanting Ma, Jie Gao, Xiajie Wang, Futian Weng, Yan Zhang, Yan Xu
{"title":"利用可解释的机器学习方法探索富营养化海域浮游植物对环境因素的反应和预测。","authors":"Shimin Yang, Yuanting Ma, Jie Gao, Xiajie Wang, Futian Weng, Yan Zhang, Yan Xu","doi":"10.1016/j.scitotenv.2024.175600","DOIUrl":null,"url":null,"abstract":"<p><p>Coastal marine areas are frequently affected by human activities and face ecological and environmental threats, such as algal blooms and climate change. The community structure of phytoplankton-primary producers in marine ecosystems-is highly sensitive to environmental factors, such as temperature, salinity, and nutrients. However, traditional methods for exploring the relationship between phytoplankton communities and environmental factors in eutrophic marine areas are limited by various factors. Therefore, this study employed interpretable machine learning models, integrating high-dimensional data analysis and complex system modeling, to quantitatively and thoroughly analyze the dynamic relationship between phytoplankton communities and environmental variables in high-frequency samples collected over 53 weeks from eutrophic marine areas. The cell abundance of phytoplankton exhibited a distinct \"two-peak pattern\" variation. Interpretable machine learning model analysis revealed the dynamic contributions of different environmental factors during changes in the phytoplankton community structure. The results showed that temperature was a key environmental factor that affected phytoplankton growth during peak periods. In addition, the contribution of salinity increased during the second peak in phytoplankton abundance, highlighting its central role in the ecological dynamics of this phase. During green tide outbreaks, particularly in Area 01, the contributions of factors such as temperature and salinity increased, whereas those of phosphates and silicates decreased, indicating that green tide outbreaks substantially altered the nutritional dynamics of the ecosystem. Furthermore, different phytoplankton species, such as Skeletonema costatum, Thalassiosira spp., and Nitzschia spp., exhibit varying responses to environmental factors. Hence, the predictions made using random forest and generalized additive models for phytoplankton cell abundance in two marine areas revealed complex nonlinear relationships between environmental factors, such as temperature, salinity, and phytoplankton abundance.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the response and prediction of phytoplankton to environmental factors in eutrophic marine areas using interpretable machine learning methods.\",\"authors\":\"Shimin Yang, Yuanting Ma, Jie Gao, Xiajie Wang, Futian Weng, Yan Zhang, Yan Xu\",\"doi\":\"10.1016/j.scitotenv.2024.175600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coastal marine areas are frequently affected by human activities and face ecological and environmental threats, such as algal blooms and climate change. The community structure of phytoplankton-primary producers in marine ecosystems-is highly sensitive to environmental factors, such as temperature, salinity, and nutrients. However, traditional methods for exploring the relationship between phytoplankton communities and environmental factors in eutrophic marine areas are limited by various factors. Therefore, this study employed interpretable machine learning models, integrating high-dimensional data analysis and complex system modeling, to quantitatively and thoroughly analyze the dynamic relationship between phytoplankton communities and environmental variables in high-frequency samples collected over 53 weeks from eutrophic marine areas. The cell abundance of phytoplankton exhibited a distinct \\\"two-peak pattern\\\" variation. Interpretable machine learning model analysis revealed the dynamic contributions of different environmental factors during changes in the phytoplankton community structure. The results showed that temperature was a key environmental factor that affected phytoplankton growth during peak periods. In addition, the contribution of salinity increased during the second peak in phytoplankton abundance, highlighting its central role in the ecological dynamics of this phase. During green tide outbreaks, particularly in Area 01, the contributions of factors such as temperature and salinity increased, whereas those of phosphates and silicates decreased, indicating that green tide outbreaks substantially altered the nutritional dynamics of the ecosystem. Furthermore, different phytoplankton species, such as Skeletonema costatum, Thalassiosira spp., and Nitzschia spp., exhibit varying responses to environmental factors. Hence, the predictions made using random forest and generalized additive models for phytoplankton cell abundance in two marine areas revealed complex nonlinear relationships between environmental factors, such as temperature, salinity, and phytoplankton abundance.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175600\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175600","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Exploring the response and prediction of phytoplankton to environmental factors in eutrophic marine areas using interpretable machine learning methods.
Coastal marine areas are frequently affected by human activities and face ecological and environmental threats, such as algal blooms and climate change. The community structure of phytoplankton-primary producers in marine ecosystems-is highly sensitive to environmental factors, such as temperature, salinity, and nutrients. However, traditional methods for exploring the relationship between phytoplankton communities and environmental factors in eutrophic marine areas are limited by various factors. Therefore, this study employed interpretable machine learning models, integrating high-dimensional data analysis and complex system modeling, to quantitatively and thoroughly analyze the dynamic relationship between phytoplankton communities and environmental variables in high-frequency samples collected over 53 weeks from eutrophic marine areas. The cell abundance of phytoplankton exhibited a distinct "two-peak pattern" variation. Interpretable machine learning model analysis revealed the dynamic contributions of different environmental factors during changes in the phytoplankton community structure. The results showed that temperature was a key environmental factor that affected phytoplankton growth during peak periods. In addition, the contribution of salinity increased during the second peak in phytoplankton abundance, highlighting its central role in the ecological dynamics of this phase. During green tide outbreaks, particularly in Area 01, the contributions of factors such as temperature and salinity increased, whereas those of phosphates and silicates decreased, indicating that green tide outbreaks substantially altered the nutritional dynamics of the ecosystem. Furthermore, different phytoplankton species, such as Skeletonema costatum, Thalassiosira spp., and Nitzschia spp., exhibit varying responses to environmental factors. Hence, the predictions made using random forest and generalized additive models for phytoplankton cell abundance in two marine areas revealed complex nonlinear relationships between environmental factors, such as temperature, salinity, and phytoplankton abundance.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture