草地和洪水缓解 - 对比鲜明的牧草可提高地表水的渗透率。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-15 Epub Date: 2024-08-17 DOI:10.1016/j.scitotenv.2024.175598
Christina L Marley, Rhun Fychan, John W Davies, Mark Scott, Felicity V Crotty, Ruth Sanderson, John Scullion
{"title":"草地和洪水缓解 - 对比鲜明的牧草可提高地表水的渗透率。","authors":"Christina L Marley, Rhun Fychan, John W Davies, Mark Scott, Felicity V Crotty, Ruth Sanderson, John Scullion","doi":"10.1016/j.scitotenv.2024.175598","DOIUrl":null,"url":null,"abstract":"<p><p>Grasslands globally deliver many ecosystem services, including water management to alleviate flood risk reduction. Two replicated field experiments were conducted to study how agricultural forage species with diverse rooting systems, sown as single species, affected rooting, soil structure and earthworm populations, and consequently water infiltration to understand how they each might influence flood risk from grasslands. Experiment One showed soils under red clover (Trifolium pratense), white clover (Trifolium repens) and chicory (Cichorium intybus) had higher infiltration rates three years after establishment, compared to perennial ryegrass (Lolium perenne). Higher red clover and chicory root biomass or increased earthworm abundance under white clover may have caused these effects. Experiment Two monitored infiltration at intervals over several years post establishment to understand the timeframe for changes in rates; plantain (Plantago lanceolata) was sown as an additional forage. Infiltration declined post establishment, the timing and extent of decline varying with forages; forage effects were significant after 27 months (P < 0.05). Infiltration rates were higher under red and white clover compared to ryegrass, with chicory and plantain intermediate (P < 0.05). Forages again differed in likely mechanisms delivering higher water infiltration, notably between the two clover species. White clover had higher earthworm biomass (P < 0.05), whereas red clover had a higher average root diameter compared to the other forages (P < 0.05). Drivers of intermediate benefits of chicory and plantain also differed: chicory had higher earthworm abundance (month 38) compared to plantain, which had higher average root diameter compared to ryegrass (month 41); 30 months post-establishment soil bulk density was lower under both forages compared to ryegrass and red clover, with white clover intermediate (P < 0.05); bulk density and penetration resistance did not relate to infiltration. Findings demonstrate that a shift from perennial ryegrass-dominated pastures to swards with more contrasting forages provides an ecohydrological approach to mitigating flood risk and climate adaptation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grasslands and flood mitigation - Contrasting forages improve surface water infiltration rates.\",\"authors\":\"Christina L Marley, Rhun Fychan, John W Davies, Mark Scott, Felicity V Crotty, Ruth Sanderson, John Scullion\",\"doi\":\"10.1016/j.scitotenv.2024.175598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grasslands globally deliver many ecosystem services, including water management to alleviate flood risk reduction. Two replicated field experiments were conducted to study how agricultural forage species with diverse rooting systems, sown as single species, affected rooting, soil structure and earthworm populations, and consequently water infiltration to understand how they each might influence flood risk from grasslands. Experiment One showed soils under red clover (Trifolium pratense), white clover (Trifolium repens) and chicory (Cichorium intybus) had higher infiltration rates three years after establishment, compared to perennial ryegrass (Lolium perenne). Higher red clover and chicory root biomass or increased earthworm abundance under white clover may have caused these effects. Experiment Two monitored infiltration at intervals over several years post establishment to understand the timeframe for changes in rates; plantain (Plantago lanceolata) was sown as an additional forage. Infiltration declined post establishment, the timing and extent of decline varying with forages; forage effects were significant after 27 months (P < 0.05). Infiltration rates were higher under red and white clover compared to ryegrass, with chicory and plantain intermediate (P < 0.05). Forages again differed in likely mechanisms delivering higher water infiltration, notably between the two clover species. White clover had higher earthworm biomass (P < 0.05), whereas red clover had a higher average root diameter compared to the other forages (P < 0.05). Drivers of intermediate benefits of chicory and plantain also differed: chicory had higher earthworm abundance (month 38) compared to plantain, which had higher average root diameter compared to ryegrass (month 41); 30 months post-establishment soil bulk density was lower under both forages compared to ryegrass and red clover, with white clover intermediate (P < 0.05); bulk density and penetration resistance did not relate to infiltration. Findings demonstrate that a shift from perennial ryegrass-dominated pastures to swards with more contrasting forages provides an ecohydrological approach to mitigating flood risk and climate adaptation.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175598\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175598","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

全球草地提供了许多生态系统服务,包括为减轻洪水风险而进行的水管理。我们进行了两项重复的田间试验,研究作为单一物种播种的具有不同根系的农用牧草物种如何影响根系、土壤结构和蚯蚓数量,进而影响水分渗透,以了解它们各自如何影响草地的洪水风险。实验一显示,与多年生黑麦草(Lolium perenne)相比,种植红三叶(Trifolium pratense)、白三叶(Trifolium repens)和菊苣(Cichorium intybus)的土壤在种植三年后的渗透率更高。白三叶下红三叶草和菊苣根部生物量较高或蚯蚓数量增加可能是造成这些影响的原因。实验二监测了建植后数年的渗透情况,以了解渗透率变化的时间范围;播种了车前草(车前草)作为额外的饲料。渗透率在建立后有所下降,下降的时间和程度随牧草的不同而变化;27 个月后,牧草的影响显著(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grasslands and flood mitigation - Contrasting forages improve surface water infiltration rates.

Grasslands globally deliver many ecosystem services, including water management to alleviate flood risk reduction. Two replicated field experiments were conducted to study how agricultural forage species with diverse rooting systems, sown as single species, affected rooting, soil structure and earthworm populations, and consequently water infiltration to understand how they each might influence flood risk from grasslands. Experiment One showed soils under red clover (Trifolium pratense), white clover (Trifolium repens) and chicory (Cichorium intybus) had higher infiltration rates three years after establishment, compared to perennial ryegrass (Lolium perenne). Higher red clover and chicory root biomass or increased earthworm abundance under white clover may have caused these effects. Experiment Two monitored infiltration at intervals over several years post establishment to understand the timeframe for changes in rates; plantain (Plantago lanceolata) was sown as an additional forage. Infiltration declined post establishment, the timing and extent of decline varying with forages; forage effects were significant after 27 months (P < 0.05). Infiltration rates were higher under red and white clover compared to ryegrass, with chicory and plantain intermediate (P < 0.05). Forages again differed in likely mechanisms delivering higher water infiltration, notably between the two clover species. White clover had higher earthworm biomass (P < 0.05), whereas red clover had a higher average root diameter compared to the other forages (P < 0.05). Drivers of intermediate benefits of chicory and plantain also differed: chicory had higher earthworm abundance (month 38) compared to plantain, which had higher average root diameter compared to ryegrass (month 41); 30 months post-establishment soil bulk density was lower under both forages compared to ryegrass and red clover, with white clover intermediate (P < 0.05); bulk density and penetration resistance did not relate to infiltration. Findings demonstrate that a shift from perennial ryegrass-dominated pastures to swards with more contrasting forages provides an ecohydrological approach to mitigating flood risk and climate adaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1