{"title":"利用胎盘间充质干细胞恢复多囊卵巢综合征大鼠模型的卵巢功能和代谢状况。","authors":"Mojtaba Sarvestani, Alireza Rajabzadeh, Tahereh Mazoochi, Mansooreh Samimi, Mohsen Navari, Faezeh Moradi","doi":"10.1186/s12902-024-01688-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disturbance that affects many women worldwide and is characterized by chronic anovulation, hyperandrogenism, and ovarian dysfunction. Placenta-derived mesenchymal stem cells (PDMSCs) are derived from the placenta and have advantages over other sources of MSCs in terms of availability, safety, and immunomodulation.</p><p><strong>Materials and methods: </strong>In this experimental study, twenty female Wistar rats were assigned to four groups (n = 5) including control, sham, PCOS, and PCOS+PDMSCs groups. Then, PCOS was induced in the rats through administering letrozole for 21 days. PDMSCs (1 × 10<sup>6</sup> cells) were injected through the tail vein. Fourteen days after the cell infusion, evaluation was performed on the number of healthy follicles, corpus luteum, and cystic follicles as well as the levels of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), fasting blood glucose, fasting insulin, and insulin resistance. Moreover, the serum levels of cholesterol, triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were measured. Liver function was also determined by the evaluation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.</p><p><strong>Results: </strong>The number of corpus luteum and primordial, primary, secondary, and antral follicles was significantly elevated in the PCOS+PDMSCs group compared to the PCOS group. However, the number of cystic follicles significantly decreased in the PCOS+PDMSCs group. The LH and testosterone levels also decreased significantly, while FSH levels increased significantly in the PCOS+PDMSCs group. The levels of fasting blood glucose, fasting insulin, and insulin resistance notably decreased in the PCOS+PDMSCs group. Moreover, the lipid profile improved in the PCOS+PDMSCs group along with a significant decrease of cholesterol, LDL, and TG and an increase in HDL. The PCOS+PDMSCs group exhibited marked decreases in the AST and ALT levels as well.</p><p><strong>Conclusion: </strong>The results of this study suggest that PDMSCs are a potential treatment option for PCOS because they can effectively restore folliculogenesis and correct hormonal imbalances, lipid profiles and liver dysfunction in a rat model of PCOS. However, further research is needed to establish the safety and effectiveness of PDMSCs for treating PCOS.</p>","PeriodicalId":9152,"journal":{"name":"BMC Endocrine Disorders","volume":"24 1","pages":"154"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of placental-derived mesenchymal stem cells to restore ovarian function and metabolic profile in a rat model of the polycystic ovarian syndrome.\",\"authors\":\"Mojtaba Sarvestani, Alireza Rajabzadeh, Tahereh Mazoochi, Mansooreh Samimi, Mohsen Navari, Faezeh Moradi\",\"doi\":\"10.1186/s12902-024-01688-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disturbance that affects many women worldwide and is characterized by chronic anovulation, hyperandrogenism, and ovarian dysfunction. Placenta-derived mesenchymal stem cells (PDMSCs) are derived from the placenta and have advantages over other sources of MSCs in terms of availability, safety, and immunomodulation.</p><p><strong>Materials and methods: </strong>In this experimental study, twenty female Wistar rats were assigned to four groups (n = 5) including control, sham, PCOS, and PCOS+PDMSCs groups. Then, PCOS was induced in the rats through administering letrozole for 21 days. PDMSCs (1 × 10<sup>6</sup> cells) were injected through the tail vein. Fourteen days after the cell infusion, evaluation was performed on the number of healthy follicles, corpus luteum, and cystic follicles as well as the levels of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), fasting blood glucose, fasting insulin, and insulin resistance. Moreover, the serum levels of cholesterol, triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were measured. Liver function was also determined by the evaluation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.</p><p><strong>Results: </strong>The number of corpus luteum and primordial, primary, secondary, and antral follicles was significantly elevated in the PCOS+PDMSCs group compared to the PCOS group. However, the number of cystic follicles significantly decreased in the PCOS+PDMSCs group. The LH and testosterone levels also decreased significantly, while FSH levels increased significantly in the PCOS+PDMSCs group. The levels of fasting blood glucose, fasting insulin, and insulin resistance notably decreased in the PCOS+PDMSCs group. Moreover, the lipid profile improved in the PCOS+PDMSCs group along with a significant decrease of cholesterol, LDL, and TG and an increase in HDL. The PCOS+PDMSCs group exhibited marked decreases in the AST and ALT levels as well.</p><p><strong>Conclusion: </strong>The results of this study suggest that PDMSCs are a potential treatment option for PCOS because they can effectively restore folliculogenesis and correct hormonal imbalances, lipid profiles and liver dysfunction in a rat model of PCOS. However, further research is needed to establish the safety and effectiveness of PDMSCs for treating PCOS.</p>\",\"PeriodicalId\":9152,\"journal\":{\"name\":\"BMC Endocrine Disorders\",\"volume\":\"24 1\",\"pages\":\"154\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Endocrine Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12902-024-01688-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Endocrine Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12902-024-01688-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Use of placental-derived mesenchymal stem cells to restore ovarian function and metabolic profile in a rat model of the polycystic ovarian syndrome.
Introduction: Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disturbance that affects many women worldwide and is characterized by chronic anovulation, hyperandrogenism, and ovarian dysfunction. Placenta-derived mesenchymal stem cells (PDMSCs) are derived from the placenta and have advantages over other sources of MSCs in terms of availability, safety, and immunomodulation.
Materials and methods: In this experimental study, twenty female Wistar rats were assigned to four groups (n = 5) including control, sham, PCOS, and PCOS+PDMSCs groups. Then, PCOS was induced in the rats through administering letrozole for 21 days. PDMSCs (1 × 106 cells) were injected through the tail vein. Fourteen days after the cell infusion, evaluation was performed on the number of healthy follicles, corpus luteum, and cystic follicles as well as the levels of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), fasting blood glucose, fasting insulin, and insulin resistance. Moreover, the serum levels of cholesterol, triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were measured. Liver function was also determined by the evaluation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.
Results: The number of corpus luteum and primordial, primary, secondary, and antral follicles was significantly elevated in the PCOS+PDMSCs group compared to the PCOS group. However, the number of cystic follicles significantly decreased in the PCOS+PDMSCs group. The LH and testosterone levels also decreased significantly, while FSH levels increased significantly in the PCOS+PDMSCs group. The levels of fasting blood glucose, fasting insulin, and insulin resistance notably decreased in the PCOS+PDMSCs group. Moreover, the lipid profile improved in the PCOS+PDMSCs group along with a significant decrease of cholesterol, LDL, and TG and an increase in HDL. The PCOS+PDMSCs group exhibited marked decreases in the AST and ALT levels as well.
Conclusion: The results of this study suggest that PDMSCs are a potential treatment option for PCOS because they can effectively restore folliculogenesis and correct hormonal imbalances, lipid profiles and liver dysfunction in a rat model of PCOS. However, further research is needed to establish the safety and effectiveness of PDMSCs for treating PCOS.
期刊介绍:
BMC Endocrine Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of endocrine disorders, as well as related molecular genetics, pathophysiology, and epidemiology.