Amanda Bruno da Silva Bellini Ramos, Tayline Torres, Luis Felipe Cunha Dos Reis, Gabriel Carvalho Lambert, Fábio Antônio Colombo, Marcos José Marques, Juliana Quero Reimão
{"title":"评估奈必洛尔在弓形虫病实验模型中的疗效:对减轻寄生虫负担和保护神经元的见解。","authors":"Amanda Bruno da Silva Bellini Ramos, Tayline Torres, Luis Felipe Cunha Dos Reis, Gabriel Carvalho Lambert, Fábio Antônio Colombo, Marcos José Marques, Juliana Quero Reimão","doi":"10.1007/s00436-024-08318-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.</p>","PeriodicalId":19968,"journal":{"name":"Parasitology Research","volume":"123 8","pages":"303"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of nebivolol efficacy in experimental models of toxoplasmosis: insights into parasite burden reduction and neuronal protection.\",\"authors\":\"Amanda Bruno da Silva Bellini Ramos, Tayline Torres, Luis Felipe Cunha Dos Reis, Gabriel Carvalho Lambert, Fábio Antônio Colombo, Marcos José Marques, Juliana Quero Reimão\",\"doi\":\"10.1007/s00436-024-08318-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.</p>\",\"PeriodicalId\":19968,\"journal\":{\"name\":\"Parasitology Research\",\"volume\":\"123 8\",\"pages\":\"303\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasitology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00436-024-08318-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00436-024-08318-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Assessment of nebivolol efficacy in experimental models of toxoplasmosis: insights into parasite burden reduction and neuronal protection.
This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.
期刊介绍:
The journal Parasitology Research covers the latest developments in parasitology across a variety of disciplines, including biology, medicine and veterinary medicine. Among many topics discussed are chemotherapy and control of parasitic disease, and the relationship of host and parasite.
Other coverage includes: Protozoology, Helminthology, Entomology; Morphology (incl. Pathomorphology, Ultrastructure); Biochemistry, Physiology including Pathophysiology;
Parasite-Host-Relationships including Immunology and Host Specificity; life history, ecology and epidemiology; and Diagnosis, Chemotherapy and Control of Parasitic Diseases.