{"title":"GABAB受体激动剂巴氯芬可阻止大鼠体内累积给药烟碱乙酰胆碱受体激动剂胞嘧啶对乙醇操作性口服自我给药的影响。","authors":"","doi":"10.1016/j.pbb.2024.173850","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale</h3><p>Although the mesocorticolimbic dopamine (DA) system is the main neurochemical substrate that regulates the addictive and reinforcing effects of ethanol (EtOH), other neurotransmitter systems, such as the acetylcholine (Ach) system, modulate DAergic function in the nucleus accumbens (nAcc). Previously, we reported that intra-nAcc administration of the nicotinic Ach receptor agonist cytisine increased oral EtOH self-administration. GABAB receptors in the nAcc are expressed in DAergic terminals, inhibit the regulation of DA release into the nAcc, and could modulate the effects of cytisine on oral EtOH self-administration. The present study assessed the effects of intra-nAcc administration of the GABAB receptor agonist baclofen (BCF) on the impacts of cytisine on oral EtOH self-administration. Methods: Male Wistar rats were deprived of water for 23.30 h and then trained to press a lever to receive EtOH on an FR3 schedule until a stable response rate of 80 % was achieved. After this training, the rats received an intra-nAcc injection of the nAch receptor agonist cytisine, BCF, and cytisine or 2-hydroxysaclofen, BCF, and cytisine before they were given access to EtOH on an FR3 schedule. Results: Intra-nAcc injections of cytisine increased oral EtOH self-administration; this effect was reduced by BCF, and 2-hydroxysaclofen blocked the effects of BCF. Conclusions: These findings suggest that the reinforcing effects of EtOH are modulated not only by the DA system but also by other neurotransmitter systems involved in regulating DA release from DAergic terminals.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of intra-accumbal administration of the nicotinic acetylcholine receptor agonist cytisine on the operant oral self-administration of ethanol were prevented by the GABAB receptor agonist baclofen in rats\",\"authors\":\"\",\"doi\":\"10.1016/j.pbb.2024.173850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale</h3><p>Although the mesocorticolimbic dopamine (DA) system is the main neurochemical substrate that regulates the addictive and reinforcing effects of ethanol (EtOH), other neurotransmitter systems, such as the acetylcholine (Ach) system, modulate DAergic function in the nucleus accumbens (nAcc). Previously, we reported that intra-nAcc administration of the nicotinic Ach receptor agonist cytisine increased oral EtOH self-administration. GABAB receptors in the nAcc are expressed in DAergic terminals, inhibit the regulation of DA release into the nAcc, and could modulate the effects of cytisine on oral EtOH self-administration. The present study assessed the effects of intra-nAcc administration of the GABAB receptor agonist baclofen (BCF) on the impacts of cytisine on oral EtOH self-administration. Methods: Male Wistar rats were deprived of water for 23.30 h and then trained to press a lever to receive EtOH on an FR3 schedule until a stable response rate of 80 % was achieved. After this training, the rats received an intra-nAcc injection of the nAch receptor agonist cytisine, BCF, and cytisine or 2-hydroxysaclofen, BCF, and cytisine before they were given access to EtOH on an FR3 schedule. Results: Intra-nAcc injections of cytisine increased oral EtOH self-administration; this effect was reduced by BCF, and 2-hydroxysaclofen blocked the effects of BCF. Conclusions: These findings suggest that the reinforcing effects of EtOH are modulated not only by the DA system but also by other neurotransmitter systems involved in regulating DA release from DAergic terminals.</p></div>\",\"PeriodicalId\":19893,\"journal\":{\"name\":\"Pharmacology Biochemistry and Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Biochemistry and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091305724001448\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305724001448","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
The effects of intra-accumbal administration of the nicotinic acetylcholine receptor agonist cytisine on the operant oral self-administration of ethanol were prevented by the GABAB receptor agonist baclofen in rats
Rationale
Although the mesocorticolimbic dopamine (DA) system is the main neurochemical substrate that regulates the addictive and reinforcing effects of ethanol (EtOH), other neurotransmitter systems, such as the acetylcholine (Ach) system, modulate DAergic function in the nucleus accumbens (nAcc). Previously, we reported that intra-nAcc administration of the nicotinic Ach receptor agonist cytisine increased oral EtOH self-administration. GABAB receptors in the nAcc are expressed in DAergic terminals, inhibit the regulation of DA release into the nAcc, and could modulate the effects of cytisine on oral EtOH self-administration. The present study assessed the effects of intra-nAcc administration of the GABAB receptor agonist baclofen (BCF) on the impacts of cytisine on oral EtOH self-administration. Methods: Male Wistar rats were deprived of water for 23.30 h and then trained to press a lever to receive EtOH on an FR3 schedule until a stable response rate of 80 % was achieved. After this training, the rats received an intra-nAcc injection of the nAch receptor agonist cytisine, BCF, and cytisine or 2-hydroxysaclofen, BCF, and cytisine before they were given access to EtOH on an FR3 schedule. Results: Intra-nAcc injections of cytisine increased oral EtOH self-administration; this effect was reduced by BCF, and 2-hydroxysaclofen blocked the effects of BCF. Conclusions: These findings suggest that the reinforcing effects of EtOH are modulated not only by the DA system but also by other neurotransmitter systems involved in regulating DA release from DAergic terminals.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.