基于 RRAM 的尖峰神经网络,具有目标调制的尖峰计时可塑性。

Kalkidan Deme Muleta, Bai-Sun Kong
{"title":"基于 RRAM 的尖峰神经网络,具有目标调制的尖峰计时可塑性。","authors":"Kalkidan Deme Muleta, Bai-Sun Kong","doi":"10.1109/TBCAS.2024.3446177","DOIUrl":null,"url":null,"abstract":"<p><p>The spiking neural network (SNN) training with spike timing-dependent plasticity (STDP) for image classification usually requires a lot of neurons to extract representative features and(or) needs an external classifier. Conventional bio-inspired learning methods do not cover all possible learning opportunities, resulting in limited performance. We propose a new bio-plausible learning rule, target-modulated STDP (TSTDP), for higher learning efficiency and accuracy. We also propose an SNN architecture trainable with TSTDP using temporally encoded spikes to obtain higher accuracy and improved area efficiency without using an external classifier. Using the MNIST dataset, we have shown that the proposed design achieves an accuracy of 92%, which is up to 7% improvement compared to conventional networks of similar sizes. For providing similar accuracy, up to 75% smaller network size has been shown on top of demonstrating stronger resilience to process variations. Benchmarking on the CIFAR-10 and neuromorphic DVS gesture datasets show an accuracy improvement of up to 12.4% and 3.6%, respectively.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RRAM-Based Spiking Neural Network with Target-Modulated Spike-Timing-Dependent Plasticity.\",\"authors\":\"Kalkidan Deme Muleta, Bai-Sun Kong\",\"doi\":\"10.1109/TBCAS.2024.3446177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spiking neural network (SNN) training with spike timing-dependent plasticity (STDP) for image classification usually requires a lot of neurons to extract representative features and(or) needs an external classifier. Conventional bio-inspired learning methods do not cover all possible learning opportunities, resulting in limited performance. We propose a new bio-plausible learning rule, target-modulated STDP (TSTDP), for higher learning efficiency and accuracy. We also propose an SNN architecture trainable with TSTDP using temporally encoded spikes to obtain higher accuracy and improved area efficiency without using an external classifier. Using the MNIST dataset, we have shown that the proposed design achieves an accuracy of 92%, which is up to 7% improvement compared to conventional networks of similar sizes. For providing similar accuracy, up to 75% smaller network size has been shown on top of demonstrating stronger resilience to process variations. Benchmarking on the CIFAR-10 and neuromorphic DVS gesture datasets show an accuracy improvement of up to 12.4% and 3.6%, respectively.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3446177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3446177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用尖峰时序可塑性(STDP)训练用于图像分类的尖峰神经网络(SNN)通常需要大量神经元来提取代表性特征,并且(或)需要外部分类器。传统的生物启发学习方法无法涵盖所有可能的学习机会,导致性能有限。为了提高学习效率和准确性,我们提出了一种新的生物仿真学习规则--目标调制 STDP(TSTDP)。我们还提出了一种可使用 TSTDP 进行训练的 SNN 架构,利用时间编码的尖峰来获得更高的准确率,并在不使用外部分类器的情况下提高面积效率。通过使用 MNIST 数据集,我们发现所提出的设计达到了 92% 的准确率,与类似规模的传统网络相比提高了 7%。在提供类似准确率的同时,网络规模也缩小了 75%,而且对流程变化的适应能力更强。在 CIFAR-10 和神经形态 DVS 手势数据集上进行的基准测试表明,准确率分别提高了 12.4% 和 3.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RRAM-Based Spiking Neural Network with Target-Modulated Spike-Timing-Dependent Plasticity.

The spiking neural network (SNN) training with spike timing-dependent plasticity (STDP) for image classification usually requires a lot of neurons to extract representative features and(or) needs an external classifier. Conventional bio-inspired learning methods do not cover all possible learning opportunities, resulting in limited performance. We propose a new bio-plausible learning rule, target-modulated STDP (TSTDP), for higher learning efficiency and accuracy. We also propose an SNN architecture trainable with TSTDP using temporally encoded spikes to obtain higher accuracy and improved area efficiency without using an external classifier. Using the MNIST dataset, we have shown that the proposed design achieves an accuracy of 92%, which is up to 7% improvement compared to conventional networks of similar sizes. For providing similar accuracy, up to 75% smaller network size has been shown on top of demonstrating stronger resilience to process variations. Benchmarking on the CIFAR-10 and neuromorphic DVS gesture datasets show an accuracy improvement of up to 12.4% and 3.6%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation. Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics. Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1