Chunwei Tian, Xuanyu Zhang, Qi Zhang, Mingming Yang, Zhaojie Ju
{"title":"通过动态网络实现图像超分辨率","authors":"Chunwei Tian, Xuanyu Zhang, Qi Zhang, Mingming Yang, Zhaojie Ju","doi":"10.1049/cit2.12297","DOIUrl":null,"url":null,"abstract":"<p>Convolutional neural networks depend on deep network architectures to extract accurate information for image super-resolution. However, obtained information of these convolutional neural networks cannot completely express predicted high-quality images for complex scenes. A dynamic network for image super-resolution (DSRNet) is presented, which contains a residual enhancement block, wide enhancement block, feature refinement block and construction block. The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super-resolution. To enhance robustness of obtained super-resolution model for complex scenes, a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super-resolution model for varying scenes. To prevent interference of components in a wide enhancement block, a refinement block utilises a stacked architecture to accurately learn obtained features. Also, a residual learning operation is embedded in the refinement block to prevent long-term dependency problem. Finally, a construction block is responsible for reconstructing high-quality images. Designed heterogeneous architecture can not only facilitate richer structural information, but also be lightweight, which is suitable for mobile digital devices. Experimental results show that our method is more competitive in terms of performance, recovering time of image super-resolution and complexity. The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 4","pages":"837-849"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12297","citationCount":"0","resultStr":"{\"title\":\"Image super-resolution via dynamic network\",\"authors\":\"Chunwei Tian, Xuanyu Zhang, Qi Zhang, Mingming Yang, Zhaojie Ju\",\"doi\":\"10.1049/cit2.12297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convolutional neural networks depend on deep network architectures to extract accurate information for image super-resolution. However, obtained information of these convolutional neural networks cannot completely express predicted high-quality images for complex scenes. A dynamic network for image super-resolution (DSRNet) is presented, which contains a residual enhancement block, wide enhancement block, feature refinement block and construction block. The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super-resolution. To enhance robustness of obtained super-resolution model for complex scenes, a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super-resolution model for varying scenes. To prevent interference of components in a wide enhancement block, a refinement block utilises a stacked architecture to accurately learn obtained features. Also, a residual learning operation is embedded in the refinement block to prevent long-term dependency problem. Finally, a construction block is responsible for reconstructing high-quality images. Designed heterogeneous architecture can not only facilitate richer structural information, but also be lightweight, which is suitable for mobile digital devices. Experimental results show that our method is more competitive in terms of performance, recovering time of image super-resolution and complexity. The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 4\",\"pages\":\"837-849\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12297\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12297\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12297","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Convolutional neural networks depend on deep network architectures to extract accurate information for image super-resolution. However, obtained information of these convolutional neural networks cannot completely express predicted high-quality images for complex scenes. A dynamic network for image super-resolution (DSRNet) is presented, which contains a residual enhancement block, wide enhancement block, feature refinement block and construction block. The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super-resolution. To enhance robustness of obtained super-resolution model for complex scenes, a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super-resolution model for varying scenes. To prevent interference of components in a wide enhancement block, a refinement block utilises a stacked architecture to accurately learn obtained features. Also, a residual learning operation is embedded in the refinement block to prevent long-term dependency problem. Finally, a construction block is responsible for reconstructing high-quality images. Designed heterogeneous architecture can not only facilitate richer structural information, but also be lightweight, which is suitable for mobile digital devices. Experimental results show that our method is more competitive in terms of performance, recovering time of image super-resolution and complexity. The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.