揭示狄拉克结线半金属 ZrSiSe 中的磁极电阻

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2024-08-20 DOI:10.1038/s41535-024-00670-2
J. F. Linnartz, A. Kool, J. P. Lorenz, C. S. A. Müller, M. R. van Delft, R. Singha, L. M. Schoop, N. E. Hussey, A. de Visser, S. Wiedmann
{"title":"揭示狄拉克结线半金属 ZrSiSe 中的磁极电阻","authors":"J. F. Linnartz, A. Kool, J. P. Lorenz, C. S. A. Müller, M. R. van Delft, R. Singha, L. M. Schoop, N. E. Hussey, A. de Visser, S. Wiedmann","doi":"10.1038/s41535-024-00670-2","DOIUrl":null,"url":null,"abstract":"<p>Quantum materials are often characterized by a marked sensitivity to minute changes in their physical environment, a property that can lead to new functionalities and thereby, to novel applications. One such key property is the magneto-elastoresistance (MER), the change in magnetoresistance (MR) of a metal induced by uniaxial strain. Understanding and modeling this response can prove challenging, particularly in systems with complex Fermi surfaces. Here, we present a thorough analysis of the MER in the nearly compensated Dirac nodal-line semi-metal ZrSiSe. Small amounts of strain (0.27%) lead to large changes (7%) in the MR. Subsequent analysis reveals that the MER response is driven primarily by a change in transport mobility that varies linearly with the applied strain. This study showcases how the effect of strain tuning on the electrical properties can be both qualitatively and quantitatively understood. A complementary Shubnikov-de Haas oscillation study sheds light on the root of this change in quantum mobility. Moreover, we unambiguously show that the Fermi surface consists of distinct electron and hole pockets revealed in quantum oscillation measurements originating from magnetic breakdown.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"9 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling magneto-elastoresistance in the Dirac nodal-line semi-metal ZrSiSe\",\"authors\":\"J. F. Linnartz, A. Kool, J. P. Lorenz, C. S. A. Müller, M. R. van Delft, R. Singha, L. M. Schoop, N. E. Hussey, A. de Visser, S. Wiedmann\",\"doi\":\"10.1038/s41535-024-00670-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum materials are often characterized by a marked sensitivity to minute changes in their physical environment, a property that can lead to new functionalities and thereby, to novel applications. One such key property is the magneto-elastoresistance (MER), the change in magnetoresistance (MR) of a metal induced by uniaxial strain. Understanding and modeling this response can prove challenging, particularly in systems with complex Fermi surfaces. Here, we present a thorough analysis of the MER in the nearly compensated Dirac nodal-line semi-metal ZrSiSe. Small amounts of strain (0.27%) lead to large changes (7%) in the MR. Subsequent analysis reveals that the MER response is driven primarily by a change in transport mobility that varies linearly with the applied strain. This study showcases how the effect of strain tuning on the electrical properties can be both qualitatively and quantitatively understood. A complementary Shubnikov-de Haas oscillation study sheds light on the root of this change in quantum mobility. Moreover, we unambiguously show that the Fermi surface consists of distinct electron and hole pockets revealed in quantum oscillation measurements originating from magnetic breakdown.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00670-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00670-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子材料通常对其物理环境中的微小变化具有明显的敏感性,这种特性可以带来新的功能,从而带来新的应用。其中一个关键特性就是磁性-弹性电阻(MER),即金属在单轴应变作用下产生的磁阻变化。理解和模拟这种响应具有挑战性,尤其是在具有复杂费米面的系统中。在此,我们对近乎补偿的狄拉克结线半金属 ZrSiSe 中的磁阻进行了深入分析。少量应变(0.27%)就会导致磁共振发生巨大变化(7%)。随后的分析表明,MER 响应主要受传输迁移率变化的驱动,而传输迁移率随所施加的应变呈线性变化。这项研究展示了如何定性和定量地理解应变调整对电学特性的影响。一项补充性的舒布尼科夫-德哈斯振荡研究揭示了量子迁移率变化的根源。此外,我们还清楚地表明,费米面由不同的电子和空穴组成,量子振荡测量结果显示了这一点,而电子和空穴则源自磁击穿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling magneto-elastoresistance in the Dirac nodal-line semi-metal ZrSiSe

Quantum materials are often characterized by a marked sensitivity to minute changes in their physical environment, a property that can lead to new functionalities and thereby, to novel applications. One such key property is the magneto-elastoresistance (MER), the change in magnetoresistance (MR) of a metal induced by uniaxial strain. Understanding and modeling this response can prove challenging, particularly in systems with complex Fermi surfaces. Here, we present a thorough analysis of the MER in the nearly compensated Dirac nodal-line semi-metal ZrSiSe. Small amounts of strain (0.27%) lead to large changes (7%) in the MR. Subsequent analysis reveals that the MER response is driven primarily by a change in transport mobility that varies linearly with the applied strain. This study showcases how the effect of strain tuning on the electrical properties can be both qualitatively and quantitatively understood. A complementary Shubnikov-de Haas oscillation study sheds light on the root of this change in quantum mobility. Moreover, we unambiguously show that the Fermi surface consists of distinct electron and hole pockets revealed in quantum oscillation measurements originating from magnetic breakdown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Spin-orbit entangled moments and magnetic exchange interactions in cobalt-based honeycomb magnets BaCo2(XO4)2 (X = P, As, Sb) Intrinsic second-order topological insulators in two-dimensional polymorphic graphyne with sublattice approximation Quantum phase transition and composite excitations of antiferromagnetic spin trimer chains in a magnetic field 3D Heisenberg universality in the van der Waals antiferromagnet NiPS3 Multinode quantum spin liquids in extended Kitaev honeycomb models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1