基于纳米孔技术检测唾液样本中的牙周炎生物标志物 miR31。

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS ELECTROPHORESIS Pub Date : 2024-08-21 DOI:10.1002/elps.202400134
Pearl Arora, Haiyan Zheng, Sathishkumar Munusamy, Rana Jahani, Xiyun Guan
{"title":"基于纳米孔技术检测唾液样本中的牙周炎生物标志物 miR31。","authors":"Pearl Arora, Haiyan Zheng, Sathishkumar Munusamy, Rana Jahani, Xiyun Guan","doi":"10.1002/elps.202400134","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) play important roles in posttranscriptional gene regulation. Aberrations in the miRNA levels have been the cause behind various diseases, including periodontitis. Therefore, sensitive, specific, and accurate detection of disease-associated miRNAs is vital to early diagnosis and can facilitate inhibitor screening and drug design. In this study, we developed a label-free, real-time sensing method for the detection of miR31, which has been frequently linked to periodontitis, using an engineered protein nanopore and in the presence of a complementary ssDNA as a molecular probe. Our method is rapid and highly sensitive with nanomolar concentration of miR31 that could be determined in minutes. Furthermore, our sensor showed high selectivity toward the target miR31 sequence even in the presence of interfering nucleic acids. In addition, artificial saliva and human saliva samples were successfully analyzed. Our developed nanopore sensing platform could be used to detect other miRNAs and offers a potential application for the clinical diagnosis of disease biomarkers.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanopore-based detection of periodontitis biomarker miR31 in saliva samples.\",\"authors\":\"Pearl Arora, Haiyan Zheng, Sathishkumar Munusamy, Rana Jahani, Xiyun Guan\",\"doi\":\"10.1002/elps.202400134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) play important roles in posttranscriptional gene regulation. Aberrations in the miRNA levels have been the cause behind various diseases, including periodontitis. Therefore, sensitive, specific, and accurate detection of disease-associated miRNAs is vital to early diagnosis and can facilitate inhibitor screening and drug design. In this study, we developed a label-free, real-time sensing method for the detection of miR31, which has been frequently linked to periodontitis, using an engineered protein nanopore and in the presence of a complementary ssDNA as a molecular probe. Our method is rapid and highly sensitive with nanomolar concentration of miR31 that could be determined in minutes. Furthermore, our sensor showed high selectivity toward the target miR31 sequence even in the presence of interfering nucleic acids. In addition, artificial saliva and human saliva samples were successfully analyzed. Our developed nanopore sensing platform could be used to detect other miRNAs and offers a potential application for the clinical diagnosis of disease biomarkers.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/elps.202400134\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400134","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

微RNA(miRNA)在转录后基因调控中发挥着重要作用。miRNA 水平的异常是导致包括牙周炎在内的各种疾病的原因。因此,灵敏、特异、准确地检测与疾病相关的 miRNA 对早期诊断至关重要,同时也有助于抑制剂筛选和药物设计。在这项研究中,我们开发了一种无标记的实时传感方法,利用工程蛋白纳米孔,在互补 ssDNA 作为分子探针的情况下,检测经常与牙周炎相关的 miR31。我们的方法快速且灵敏度高,可在几分钟内检测出纳摩尔浓度的 miR31。此外,即使存在干扰核酸,我们的传感器对目标 miR31 序列也有很高的选择性。此外,我们还成功分析了人工唾液和人类唾液样本。我们开发的纳米孔传感平台可用于检测其他 miRNA,并有望应用于疾病生物标志物的临床诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanopore-based detection of periodontitis biomarker miR31 in saliva samples.

MicroRNAs (miRNAs) play important roles in posttranscriptional gene regulation. Aberrations in the miRNA levels have been the cause behind various diseases, including periodontitis. Therefore, sensitive, specific, and accurate detection of disease-associated miRNAs is vital to early diagnosis and can facilitate inhibitor screening and drug design. In this study, we developed a label-free, real-time sensing method for the detection of miR31, which has been frequently linked to periodontitis, using an engineered protein nanopore and in the presence of a complementary ssDNA as a molecular probe. Our method is rapid and highly sensitive with nanomolar concentration of miR31 that could be determined in minutes. Furthermore, our sensor showed high selectivity toward the target miR31 sequence even in the presence of interfering nucleic acids. In addition, artificial saliva and human saliva samples were successfully analyzed. Our developed nanopore sensing platform could be used to detect other miRNAs and offers a potential application for the clinical diagnosis of disease biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
期刊最新文献
A Micro-Flow Liquid Chromatography-Mass Spectrometry Method for the Quantification of Oxylipins in Volume-Limited Human Plasma. Dynamics of Viscous Jeffrey Fluid Flow Through Darcian Medium With Hall Current and Quadratic Buoyancy. Enhanced Green Fluorescent Protein Streaming Dielectrophoresis in Insulator-Based Microfluidic Devices. Fatty Acid Analysis by Capillary Electrophoresis and Contactless Conductivity Detection for Future Life Detection Missions. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1