Yusuf Jamal, Moiz Usmani, Kyle D. Brumfield, Komalpreet Singh, Anwar Huq, Thanh Huong Nguyen, Rita Colwell, Antarpreet Jutla
{"title":"美国墨西哥湾沿岸人类群落中弧菌气候足迹的量化。","authors":"Yusuf Jamal, Moiz Usmani, Kyle D. Brumfield, Komalpreet Singh, Anwar Huq, Thanh Huong Nguyen, Rita Colwell, Antarpreet Jutla","doi":"10.1029/2023GH001005","DOIUrl":null,"url":null,"abstract":"<p>The incidence of vibriosis is rising globally with evidence of climate variability influencing environmental processes that support growth of pathogenic <i>Vibrio spp</i>. The waterborne pathogen, <i>Vibrio vulnificus</i> can invade wounds and has one of the highest case fatality rates in humans. The bacterium cannot be eradicated from the aquatic environment, hence climate driven environmental conditions enhancing growth and dissemination of <i>V</i>. <i>vulnificus</i> need to be understood to provide preemptive assessment of its presence and distribution in aquatic systems. To achieve this objective, satellite remote sensing was employed to quantify the association of sea surface temperature (SST) and chlorophyll-<i>a</i> (chl-<i>a</i>) in locations with reported <i>V</i>. <i>vulnificus</i> infections. Monthly analysis was done in two populated regions of the Gulf of Mexico—Tampa Bay, Florida, and Galveston Bay, Texas. Results indicate warm water, characterized by a 2-month lag in SST, high concentration of phytoplankton, proxied for zooplankton using 1 month lagged chl-<i>a</i> values, was statistically linked to higher odds of <i>V</i>. <i>vulnificus</i> infection in the human population. Identification of climate and ecological processes thresholds is concluded to be useful for development of an heuristic prediction system designed to determine risk of infection for coastal populations.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantification of Climate Footprints of Vibrio vulnificus in Coastal Human Communities of the United States Gulf Coast\",\"authors\":\"Yusuf Jamal, Moiz Usmani, Kyle D. Brumfield, Komalpreet Singh, Anwar Huq, Thanh Huong Nguyen, Rita Colwell, Antarpreet Jutla\",\"doi\":\"10.1029/2023GH001005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The incidence of vibriosis is rising globally with evidence of climate variability influencing environmental processes that support growth of pathogenic <i>Vibrio spp</i>. The waterborne pathogen, <i>Vibrio vulnificus</i> can invade wounds and has one of the highest case fatality rates in humans. The bacterium cannot be eradicated from the aquatic environment, hence climate driven environmental conditions enhancing growth and dissemination of <i>V</i>. <i>vulnificus</i> need to be understood to provide preemptive assessment of its presence and distribution in aquatic systems. To achieve this objective, satellite remote sensing was employed to quantify the association of sea surface temperature (SST) and chlorophyll-<i>a</i> (chl-<i>a</i>) in locations with reported <i>V</i>. <i>vulnificus</i> infections. Monthly analysis was done in two populated regions of the Gulf of Mexico—Tampa Bay, Florida, and Galveston Bay, Texas. Results indicate warm water, characterized by a 2-month lag in SST, high concentration of phytoplankton, proxied for zooplankton using 1 month lagged chl-<i>a</i> values, was statistically linked to higher odds of <i>V</i>. <i>vulnificus</i> infection in the human population. Identification of climate and ecological processes thresholds is concluded to be useful for development of an heuristic prediction system designed to determine risk of infection for coastal populations.</p>\",\"PeriodicalId\":48618,\"journal\":{\"name\":\"Geohealth\",\"volume\":\"8 8\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GH001005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GH001005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantification of Climate Footprints of Vibrio vulnificus in Coastal Human Communities of the United States Gulf Coast
The incidence of vibriosis is rising globally with evidence of climate variability influencing environmental processes that support growth of pathogenic Vibrio spp. The waterborne pathogen, Vibrio vulnificus can invade wounds and has one of the highest case fatality rates in humans. The bacterium cannot be eradicated from the aquatic environment, hence climate driven environmental conditions enhancing growth and dissemination of V. vulnificus need to be understood to provide preemptive assessment of its presence and distribution in aquatic systems. To achieve this objective, satellite remote sensing was employed to quantify the association of sea surface temperature (SST) and chlorophyll-a (chl-a) in locations with reported V. vulnificus infections. Monthly analysis was done in two populated regions of the Gulf of Mexico—Tampa Bay, Florida, and Galveston Bay, Texas. Results indicate warm water, characterized by a 2-month lag in SST, high concentration of phytoplankton, proxied for zooplankton using 1 month lagged chl-a values, was statistically linked to higher odds of V. vulnificus infection in the human population. Identification of climate and ecological processes thresholds is concluded to be useful for development of an heuristic prediction system designed to determine risk of infection for coastal populations.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.