喷嘴创新提高了多材料增材制造的产能和能力

Patrick J. McCauley,  and , Alexandra V. Bayles*, 
{"title":"喷嘴创新提高了多材料增材制造的产能和能力","authors":"Patrick J. McCauley,&nbsp; and ,&nbsp;Alexandra V. Bayles*,&nbsp;","doi":"10.1021/acsengineeringau.4c0000110.1021/acsengineeringau.4c00001","DOIUrl":null,"url":null,"abstract":"<p >Multimaterial additive manufacturing incorporates multiple species within a single 3D-printed object to enhance its material properties and functionality. This technology could play a key role in distributed manufacturing. However, conventional layer-by-layer construction methods must operate at low volumetric throughputs to maintain fine feature resolution. One approach to overcome this challenge and increase production capacity is to structure multimaterial components in the printhead prior to deposition. Here we survey four classes of multimaterial nozzle innovations, nozzle arrays, coextruders, static mixers, and advective assemblers, designed for this purpose. Additionally, each design offers unique capabilities that provide benefits associated with accessible architectures, interfacial adhesion, material properties, and even living-cell viability. Accessing these benefits requires trade-offs, which may be mitigated with future investigation. Leveraging decades of research and development of multiphase extrusion equipment can help us engineer the next generation of 3D-printing nozzles and expand the capabilities and practical reach of multimaterial additive manufacturing.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00001","citationCount":"0","resultStr":"{\"title\":\"Nozzle Innovations That Improve Capacity and Capabilities of Multimaterial Additive Manufacturing\",\"authors\":\"Patrick J. McCauley,&nbsp; and ,&nbsp;Alexandra V. Bayles*,&nbsp;\",\"doi\":\"10.1021/acsengineeringau.4c0000110.1021/acsengineeringau.4c00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multimaterial additive manufacturing incorporates multiple species within a single 3D-printed object to enhance its material properties and functionality. This technology could play a key role in distributed manufacturing. However, conventional layer-by-layer construction methods must operate at low volumetric throughputs to maintain fine feature resolution. One approach to overcome this challenge and increase production capacity is to structure multimaterial components in the printhead prior to deposition. Here we survey four classes of multimaterial nozzle innovations, nozzle arrays, coextruders, static mixers, and advective assemblers, designed for this purpose. Additionally, each design offers unique capabilities that provide benefits associated with accessible architectures, interfacial adhesion, material properties, and even living-cell viability. Accessing these benefits requires trade-offs, which may be mitigated with future investigation. Leveraging decades of research and development of multiphase extrusion equipment can help us engineer the next generation of 3D-printing nozzles and expand the capabilities and practical reach of multimaterial additive manufacturing.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

多材料增材制造技术在单个三维打印物体中加入多种材料,以增强其材料特性和功能。这项技术可在分布式制造中发挥关键作用。然而,传统的逐层构建方法必须在较低的体积吞吐量下运行,以保持精细的特征分辨率。克服这一挑战并提高生产能力的方法之一是在沉积之前在打印头中构建多材料组件。在此,我们将对为此目的而设计的四类多材料喷嘴创新、喷嘴阵列、共挤器、静态混合器和平流装配器进行调查。此外,每种设计都具有独特的功能,可提供与可访问架构、界面粘附、材料特性甚至活细胞存活率相关的优势。获得这些优势需要权衡利弊,而未来的研究可能会减轻这些弊端。利用数十年来对多相挤压设备的研究和开发,可以帮助我们设计出下一代三维打印喷嘴,扩大多材料增材制造的能力和实用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nozzle Innovations That Improve Capacity and Capabilities of Multimaterial Additive Manufacturing

Multimaterial additive manufacturing incorporates multiple species within a single 3D-printed object to enhance its material properties and functionality. This technology could play a key role in distributed manufacturing. However, conventional layer-by-layer construction methods must operate at low volumetric throughputs to maintain fine feature resolution. One approach to overcome this challenge and increase production capacity is to structure multimaterial components in the printhead prior to deposition. Here we survey four classes of multimaterial nozzle innovations, nozzle arrays, coextruders, static mixers, and advective assemblers, designed for this purpose. Additionally, each design offers unique capabilities that provide benefits associated with accessible architectures, interfacial adhesion, material properties, and even living-cell viability. Accessing these benefits requires trade-offs, which may be mitigated with future investigation. Leveraging decades of research and development of multiphase extrusion equipment can help us engineer the next generation of 3D-printing nozzles and expand the capabilities and practical reach of multimaterial additive manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
期刊最新文献
Issue Editorial Masthead Issue Publication Information Magnetowetting Dynamics of Compound Droplets Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1