{"title":"去除二氧化碳的海洋限制的化学方面:海水中氢氧化钙的溶解动力学","authors":"Selene Varliero, Annamaria Buono, Stefano Caserini, Guido Raos* and Piero Macchi*, ","doi":"10.1021/acsengineeringau.4c0000810.1021/acsengineeringau.4c00008","DOIUrl":null,"url":null,"abstract":"<p >Ocean liming is attracting ever-increasing attention as one of the most suitable and convenient ways of removing carbon dioxide from the atmosphere and combating global warming and the acidification of the oceans at the same time. However, the short-term consequences of Ca(OH)<sub>2</sub> [slaked lime] dissolution in seawater have been scarcely studied. In this work, we investigate in detail what happens in the initial stages after the dissolution of slaked lime, analyzing the kinetics of the process and the effects on the physicochemical parameters of seawater. A series of experiments, carried out by varying the seawater conditions (like temperature and salinity) or the liming conditions (like the dispersion in the form of slurry or powder and the concentration) allow us to draw conclusions on the ideal conditions for a more efficient and environmentally friendly liming process.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00008","citationCount":"0","resultStr":"{\"title\":\"Chemical Aspect of Ocean Liming for CO2 Removal: Dissolution Kinetics of Calcium Hydroxide in Seawater\",\"authors\":\"Selene Varliero, Annamaria Buono, Stefano Caserini, Guido Raos* and Piero Macchi*, \",\"doi\":\"10.1021/acsengineeringau.4c0000810.1021/acsengineeringau.4c00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ocean liming is attracting ever-increasing attention as one of the most suitable and convenient ways of removing carbon dioxide from the atmosphere and combating global warming and the acidification of the oceans at the same time. However, the short-term consequences of Ca(OH)<sub>2</sub> [slaked lime] dissolution in seawater have been scarcely studied. In this work, we investigate in detail what happens in the initial stages after the dissolution of slaked lime, analyzing the kinetics of the process and the effects on the physicochemical parameters of seawater. A series of experiments, carried out by varying the seawater conditions (like temperature and salinity) or the liming conditions (like the dispersion in the form of slurry or powder and the concentration) allow us to draw conclusions on the ideal conditions for a more efficient and environmentally friendly liming process.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Chemical Aspect of Ocean Liming for CO2 Removal: Dissolution Kinetics of Calcium Hydroxide in Seawater
Ocean liming is attracting ever-increasing attention as one of the most suitable and convenient ways of removing carbon dioxide from the atmosphere and combating global warming and the acidification of the oceans at the same time. However, the short-term consequences of Ca(OH)2 [slaked lime] dissolution in seawater have been scarcely studied. In this work, we investigate in detail what happens in the initial stages after the dissolution of slaked lime, analyzing the kinetics of the process and the effects on the physicochemical parameters of seawater. A series of experiments, carried out by varying the seawater conditions (like temperature and salinity) or the liming conditions (like the dispersion in the form of slurry or powder and the concentration) allow us to draw conclusions on the ideal conditions for a more efficient and environmentally friendly liming process.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)