企业技术合作的新方法:通过技术相似性和互补性推荐研发合作伙伴

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-20 DOI:10.1016/j.joi.2024.101571
Minghui Qian , Mengchun Zhao , Jianliang Yang , Guancan Yang , Jiayuan Xu , Xusen Cheng
{"title":"企业技术合作的新方法:通过技术相似性和互补性推荐研发合作伙伴","authors":"Minghui Qian ,&nbsp;Mengchun Zhao ,&nbsp;Jianliang Yang ,&nbsp;Guancan Yang ,&nbsp;Jiayuan Xu ,&nbsp;Xusen Cheng","doi":"10.1016/j.joi.2024.101571","DOIUrl":null,"url":null,"abstract":"<div><p>Choosing the right partner is a key factor in the success of enterprise R&amp;D cooperation, directly affecting innovation outcomes and market competitiveness. Technical similarity provides a common language and foundational understanding between enterprises, while technical complementarity offers opportunities for knowledge exchange and innovation. However, no previous research has effectively integrated these two features within a collaborator recommendation framework. This study aims to explore a method that combines technological similarity and complementarity for collaborator recommendations. We introduced the Technological Similarity and Complementarity Enhanced Collaborator Recommendation (TSCE-CR) model, which constructs a heterogeneous corporate collaboration network and designs a tailored loss function. This model effectively integrates features of technological similarity and complementarity, enabling the neural network to capture and elucidate the nonlinear and multidimensional relationships in corporate collaborations. Experimental validation on patent data in the field of artificial intelligence demonstrated that our TSCE-CR model excels in identifying potential collaborators, effectively confirming the critical role of technological complementarity in R&amp;D collaboration. This research provides a flexible framework for future studies on collaborator recommendations and offers reliable decision-making support for enterprises in selecting R&amp;D partners.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach to enterprise technical collaboration: Recommending R&D partners through technological similarity and complementarity\",\"authors\":\"Minghui Qian ,&nbsp;Mengchun Zhao ,&nbsp;Jianliang Yang ,&nbsp;Guancan Yang ,&nbsp;Jiayuan Xu ,&nbsp;Xusen Cheng\",\"doi\":\"10.1016/j.joi.2024.101571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Choosing the right partner is a key factor in the success of enterprise R&amp;D cooperation, directly affecting innovation outcomes and market competitiveness. Technical similarity provides a common language and foundational understanding between enterprises, while technical complementarity offers opportunities for knowledge exchange and innovation. However, no previous research has effectively integrated these two features within a collaborator recommendation framework. This study aims to explore a method that combines technological similarity and complementarity for collaborator recommendations. We introduced the Technological Similarity and Complementarity Enhanced Collaborator Recommendation (TSCE-CR) model, which constructs a heterogeneous corporate collaboration network and designs a tailored loss function. This model effectively integrates features of technological similarity and complementarity, enabling the neural network to capture and elucidate the nonlinear and multidimensional relationships in corporate collaborations. Experimental validation on patent data in the field of artificial intelligence demonstrated that our TSCE-CR model excels in identifying potential collaborators, effectively confirming the critical role of technological complementarity in R&amp;D collaboration. This research provides a flexible framework for future studies on collaborator recommendations and offers reliable decision-making support for enterprises in selecting R&amp;D partners.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175115772400083X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175115772400083X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

选择合适的合作伙伴是企业研发合作成功的关键因素,直接影响创新成果和市场竞争力。技术相似性为企业之间提供了共同语言和基础理解,而技术互补性则为知识交流和创新提供了机会。然而,以往的研究还没有将这两个特征有效地整合到合作者推荐框架中。本研究旨在探索一种结合技术相似性和互补性的合作者推荐方法。我们引入了技术相似性和互补性增强合作者推荐(TSCE-CR)模型,该模型构建了一个异构的企业合作网络,并设计了一个量身定制的损失函数。该模型有效整合了技术相似性和互补性特征,使神经网络能够捕捉并阐明企业合作中的非线性和多维关系。人工智能领域专利数据的实验验证表明,我们的 TSCE-CR 模型在识别潜在合作者方面表现出色,有效证实了技术互补性在研发合作中的关键作用。这项研究为今后的合作者推荐研究提供了一个灵活的框架,为企业选择研发合作伙伴提供了可靠的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach to enterprise technical collaboration: Recommending R&D partners through technological similarity and complementarity

Choosing the right partner is a key factor in the success of enterprise R&D cooperation, directly affecting innovation outcomes and market competitiveness. Technical similarity provides a common language and foundational understanding between enterprises, while technical complementarity offers opportunities for knowledge exchange and innovation. However, no previous research has effectively integrated these two features within a collaborator recommendation framework. This study aims to explore a method that combines technological similarity and complementarity for collaborator recommendations. We introduced the Technological Similarity and Complementarity Enhanced Collaborator Recommendation (TSCE-CR) model, which constructs a heterogeneous corporate collaboration network and designs a tailored loss function. This model effectively integrates features of technological similarity and complementarity, enabling the neural network to capture and elucidate the nonlinear and multidimensional relationships in corporate collaborations. Experimental validation on patent data in the field of artificial intelligence demonstrated that our TSCE-CR model excels in identifying potential collaborators, effectively confirming the critical role of technological complementarity in R&D collaboration. This research provides a flexible framework for future studies on collaborator recommendations and offers reliable decision-making support for enterprises in selecting R&D partners.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1