Bingyu Zhao , Jianjun Wu , Meng Chen , Jingyu Lin , Ruohua Du
{"title":"基于长时间序列地表水动态的季节性淹没区提取,用于改进洪水测绘","authors":"Bingyu Zhao , Jianjun Wu , Meng Chen , Jingyu Lin , Ruohua Du","doi":"10.1016/j.isprsjprs.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate extraction of Seasonally Inundated Area (SIA) is pivotal for precise delineation of Flood Inundation Area (FIA). Current methods predominantly rely on Water Inundation Frequency (WIF) to extract SIA, which, due to the lack of analysis of dynamic surface water changes, often yields less accurate and robust results. This significantly hampers the rapid and precise mapping of FIA. In the study, based on the Harmonic Models constructed from Long Time-series Surface Water (LTSW) dynamics, an SIA extraction approach (SHM) was introduced to enhance their accuracy and robustness, thereby improving flood mapping. The experiments were conducted in Poyang Lake, a region characterized by active hydrological phenomena. Sentinel-1/2 remote sensing data were utilized to extract LTSW. Harmonic analysis was applied to the LTSW dataset, using the amplitude terms in the harmonic model to characterise the frequency of variation between land and water for the surface units, thus extracting the SIAs. The results reveal that the harmonic model parameters are capable of portraying SIA. In comparison to the commonly used WIF thresholding method for SIA extraction, the SHM approach demonstrates superior accuracy and robustness. Leveraging the SIA extracted through SHM, a higher level of accuracy in FIA extraction is achieved. Overall, the SHM offers notable advantages, including high accuracy, automation, and robustness. It offers reliable reference water extents for flood mapping, especially in areas with active and complex hydrological dynamics. SHM can play a crucial role in emergency response to flood disasters, providing essential technical support for natural disaster management and related departments.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"217 ","pages":"Pages 32-52"},"PeriodicalIF":10.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonally inundated area extraction based on long time-series surface water dynamics for improved flood mapping\",\"authors\":\"Bingyu Zhao , Jianjun Wu , Meng Chen , Jingyu Lin , Ruohua Du\",\"doi\":\"10.1016/j.isprsjprs.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate extraction of Seasonally Inundated Area (SIA) is pivotal for precise delineation of Flood Inundation Area (FIA). Current methods predominantly rely on Water Inundation Frequency (WIF) to extract SIA, which, due to the lack of analysis of dynamic surface water changes, often yields less accurate and robust results. This significantly hampers the rapid and precise mapping of FIA. In the study, based on the Harmonic Models constructed from Long Time-series Surface Water (LTSW) dynamics, an SIA extraction approach (SHM) was introduced to enhance their accuracy and robustness, thereby improving flood mapping. The experiments were conducted in Poyang Lake, a region characterized by active hydrological phenomena. Sentinel-1/2 remote sensing data were utilized to extract LTSW. Harmonic analysis was applied to the LTSW dataset, using the amplitude terms in the harmonic model to characterise the frequency of variation between land and water for the surface units, thus extracting the SIAs. The results reveal that the harmonic model parameters are capable of portraying SIA. In comparison to the commonly used WIF thresholding method for SIA extraction, the SHM approach demonstrates superior accuracy and robustness. Leveraging the SIA extracted through SHM, a higher level of accuracy in FIA extraction is achieved. Overall, the SHM offers notable advantages, including high accuracy, automation, and robustness. It offers reliable reference water extents for flood mapping, especially in areas with active and complex hydrological dynamics. SHM can play a crucial role in emergency response to flood disasters, providing essential technical support for natural disaster management and related departments.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"217 \",\"pages\":\"Pages 32-52\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003071\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003071","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
准确提取季节性淹没区(SIA)是精确划分洪水淹没区(FIA)的关键。目前的方法主要依靠水淹没频率(WIF)来提取季节性淹没区,由于缺乏对地表水动态变化的分析,其结果往往不够准确和可靠。这极大地阻碍了快速、精确地绘制 FIA 图。在本研究中,基于长时间序列地表水(LTSW)动态变化构建的谐波模型,引入了一种 SIA 提取方法(SHM),以提高其准确性和鲁棒性,从而改善洪水测绘。实验在水文现象活跃的鄱阳湖进行。利用哨兵-1/2 遥感数据提取 LTSW。对 LTSW 数据集进行谐波分析,利用谐波模型中的振幅项来描述地表单元的水陆变化频率,从而提取 SIA。结果表明,谐波模型参数能够描绘 SIA。与常用的提取 SIA 的 WIF 阈值法相比,SHM 方法具有更高的准确性和鲁棒性。利用 SHM 方法提取的 SIA,可以实现更高水平的 FIA 提取精度。总体而言,SHM 具有显著的优势,包括高精度、自动化和稳健性。它为洪水测绘提供了可靠的参考水域范围,尤其是在水文动态活跃而复杂的地区。SHM 可以在洪水灾害的应急响应中发挥重要作用,为自然灾害管理和相关部门提供必要的技术支持。
Seasonally inundated area extraction based on long time-series surface water dynamics for improved flood mapping
Accurate extraction of Seasonally Inundated Area (SIA) is pivotal for precise delineation of Flood Inundation Area (FIA). Current methods predominantly rely on Water Inundation Frequency (WIF) to extract SIA, which, due to the lack of analysis of dynamic surface water changes, often yields less accurate and robust results. This significantly hampers the rapid and precise mapping of FIA. In the study, based on the Harmonic Models constructed from Long Time-series Surface Water (LTSW) dynamics, an SIA extraction approach (SHM) was introduced to enhance their accuracy and robustness, thereby improving flood mapping. The experiments were conducted in Poyang Lake, a region characterized by active hydrological phenomena. Sentinel-1/2 remote sensing data were utilized to extract LTSW. Harmonic analysis was applied to the LTSW dataset, using the amplitude terms in the harmonic model to characterise the frequency of variation between land and water for the surface units, thus extracting the SIAs. The results reveal that the harmonic model parameters are capable of portraying SIA. In comparison to the commonly used WIF thresholding method for SIA extraction, the SHM approach demonstrates superior accuracy and robustness. Leveraging the SIA extracted through SHM, a higher level of accuracy in FIA extraction is achieved. Overall, the SHM offers notable advantages, including high accuracy, automation, and robustness. It offers reliable reference water extents for flood mapping, especially in areas with active and complex hydrological dynamics. SHM can play a crucial role in emergency response to flood disasters, providing essential technical support for natural disaster management and related departments.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.