{"title":"利用钻孔破裂进行原位应力分析的多轴向破坏标准:审查现有方法并开发经验替代方法","authors":"Maciej Trzeciak, Hiroki Sone","doi":"10.1016/j.ijrmms.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><p>Analysis of compressive wellbore failure, or breakouts, is one of the primary methods of constraining the maximum horizontal stress in deep boreholes. To estimate stress using the observation of breakouts, one needs to measure the breakout width from image logs and use a failure theory to predict the stress that led to the development of the measured breakout. Most commonly, Mohr–Coulomb failure criterion has been used which disregards the influence of intermediate stress on strength. Hence, various polyaxial criteria have been proposed to include this effect. Here, we first review some selected polyaxial criteria: Drucker–Prager, Mogi, Modified Wiebols–Cook, and Modified Lade, and we conclude that their application in breakout analysis may be cumbersome and often unreliable. One reason for these problems is that the criteria are defined using stress invariants, while the stress estimation is most easily performed and analyzed in the principal stress space. Therefore, an alternative is to define the polyaxial criterion as a simple relation between maximum and intermediate stresses. We propose to define such an empirical criterion as a second order polynomial which fits trends observed in polyaxial laboratory strength data. Such approach allows to limit strength overestimation, often associated with the use of previous polyaxial criteria, and to easily relate uncertainties in strength estimation to uncertainty in maximum horizontal stress prediction.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"182 ","pages":"Article 105864"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyaxial failure criteria for in situ stress analysis using borehole breakouts: Review of existing methods and development of an empirical alternative\",\"authors\":\"Maciej Trzeciak, Hiroki Sone\",\"doi\":\"10.1016/j.ijrmms.2024.105864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Analysis of compressive wellbore failure, or breakouts, is one of the primary methods of constraining the maximum horizontal stress in deep boreholes. To estimate stress using the observation of breakouts, one needs to measure the breakout width from image logs and use a failure theory to predict the stress that led to the development of the measured breakout. Most commonly, Mohr–Coulomb failure criterion has been used which disregards the influence of intermediate stress on strength. Hence, various polyaxial criteria have been proposed to include this effect. Here, we first review some selected polyaxial criteria: Drucker–Prager, Mogi, Modified Wiebols–Cook, and Modified Lade, and we conclude that their application in breakout analysis may be cumbersome and often unreliable. One reason for these problems is that the criteria are defined using stress invariants, while the stress estimation is most easily performed and analyzed in the principal stress space. Therefore, an alternative is to define the polyaxial criterion as a simple relation between maximum and intermediate stresses. We propose to define such an empirical criterion as a second order polynomial which fits trends observed in polyaxial laboratory strength data. Such approach allows to limit strength overestimation, often associated with the use of previous polyaxial criteria, and to easily relate uncertainties in strength estimation to uncertainty in maximum horizontal stress prediction.</p></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"182 \",\"pages\":\"Article 105864\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002296\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002296","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Polyaxial failure criteria for in situ stress analysis using borehole breakouts: Review of existing methods and development of an empirical alternative
Analysis of compressive wellbore failure, or breakouts, is one of the primary methods of constraining the maximum horizontal stress in deep boreholes. To estimate stress using the observation of breakouts, one needs to measure the breakout width from image logs and use a failure theory to predict the stress that led to the development of the measured breakout. Most commonly, Mohr–Coulomb failure criterion has been used which disregards the influence of intermediate stress on strength. Hence, various polyaxial criteria have been proposed to include this effect. Here, we first review some selected polyaxial criteria: Drucker–Prager, Mogi, Modified Wiebols–Cook, and Modified Lade, and we conclude that their application in breakout analysis may be cumbersome and often unreliable. One reason for these problems is that the criteria are defined using stress invariants, while the stress estimation is most easily performed and analyzed in the principal stress space. Therefore, an alternative is to define the polyaxial criterion as a simple relation between maximum and intermediate stresses. We propose to define such an empirical criterion as a second order polynomial which fits trends observed in polyaxial laboratory strength data. Such approach allows to limit strength overestimation, often associated with the use of previous polyaxial criteria, and to easily relate uncertainties in strength estimation to uncertainty in maximum horizontal stress prediction.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.