Jin Wang , Xiangyang Zhao , Eugenio Brusa , Cristiana Delprete , Xinxiang Hou , Xiaoli Xiang , Chen Wang , Yan Peng
{"title":"基于最大李雅普诺夫指数的柔性轧制工艺轧机系统稳定性分析","authors":"Jin Wang , Xiangyang Zhao , Eugenio Brusa , Cristiana Delprete , Xinxiang Hou , Xiaoli Xiang , Chen Wang , Yan Peng","doi":"10.1016/j.ijnonlinmec.2024.104874","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible rolling technology is the current development trend of strip production industry. However, due to the simultaneous change of mechanical, process and strip specification parameters in the flexible rolling process, the motion state of the system is difficult to analyze and stability control is hard to achieve. In this paper, the active motion characteristics of rolls in flexible rolling technology are considered, and the dynamic rolling process model is established to reflect the influence mechanism of process and specification parameters on the dynamic rolling force. The dynamic model of a 4-high rolling mill was developed and the structure-process-strip coupling strategy was applied to couple the models. The Runge-Kutta method was applied to solve the dynamic equation to obtain the maximum Lyapunov exponential spectrum for a single parameter variation. It is noteworthy that the two-parameter dynamics method was adopted to solve the dynamics on the two-parameter plane considering the nature of simultaneous variation of the system parameters, which solves the limitations of the traditional analytical method and is suitable for the application of the flexible rolling system. The results suggest that the parameters influence the motion state in the form of coupling, the influence pattern of each parameter on the stability is clarified, the evolution of the stable domain under the effect of parameter coupling is revealed, and the parameter matching strategy is determined. The results will provide a solution for the system parameter setting of flexible rolling technology and a theoretical reference for enhancing the stability of the rolling mill.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"166 ","pages":"Article 104874"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of rolling mill system for flexible rolling process based on maximum Lyapunov exponent\",\"authors\":\"Jin Wang , Xiangyang Zhao , Eugenio Brusa , Cristiana Delprete , Xinxiang Hou , Xiaoli Xiang , Chen Wang , Yan Peng\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible rolling technology is the current development trend of strip production industry. However, due to the simultaneous change of mechanical, process and strip specification parameters in the flexible rolling process, the motion state of the system is difficult to analyze and stability control is hard to achieve. In this paper, the active motion characteristics of rolls in flexible rolling technology are considered, and the dynamic rolling process model is established to reflect the influence mechanism of process and specification parameters on the dynamic rolling force. The dynamic model of a 4-high rolling mill was developed and the structure-process-strip coupling strategy was applied to couple the models. The Runge-Kutta method was applied to solve the dynamic equation to obtain the maximum Lyapunov exponential spectrum for a single parameter variation. It is noteworthy that the two-parameter dynamics method was adopted to solve the dynamics on the two-parameter plane considering the nature of simultaneous variation of the system parameters, which solves the limitations of the traditional analytical method and is suitable for the application of the flexible rolling system. The results suggest that the parameters influence the motion state in the form of coupling, the influence pattern of each parameter on the stability is clarified, the evolution of the stable domain under the effect of parameter coupling is revealed, and the parameter matching strategy is determined. The results will provide a solution for the system parameter setting of flexible rolling technology and a theoretical reference for enhancing the stability of the rolling mill.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"166 \",\"pages\":\"Article 104874\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002397\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002397","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Stability analysis of rolling mill system for flexible rolling process based on maximum Lyapunov exponent
Flexible rolling technology is the current development trend of strip production industry. However, due to the simultaneous change of mechanical, process and strip specification parameters in the flexible rolling process, the motion state of the system is difficult to analyze and stability control is hard to achieve. In this paper, the active motion characteristics of rolls in flexible rolling technology are considered, and the dynamic rolling process model is established to reflect the influence mechanism of process and specification parameters on the dynamic rolling force. The dynamic model of a 4-high rolling mill was developed and the structure-process-strip coupling strategy was applied to couple the models. The Runge-Kutta method was applied to solve the dynamic equation to obtain the maximum Lyapunov exponential spectrum for a single parameter variation. It is noteworthy that the two-parameter dynamics method was adopted to solve the dynamics on the two-parameter plane considering the nature of simultaneous variation of the system parameters, which solves the limitations of the traditional analytical method and is suitable for the application of the flexible rolling system. The results suggest that the parameters influence the motion state in the form of coupling, the influence pattern of each parameter on the stability is clarified, the evolution of the stable domain under the effect of parameter coupling is revealed, and the parameter matching strategy is determined. The results will provide a solution for the system parameter setting of flexible rolling technology and a theoretical reference for enhancing the stability of the rolling mill.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.