加强非牛顿流体建模:横流曲线模型的新扩展

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Journal of Hydro-environment Research Pub Date : 2024-08-18 DOI:10.1016/j.jher.2024.08.001
{"title":"加强非牛顿流体建模:横流曲线模型的新扩展","authors":"","doi":"10.1016/j.jher.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>A number of viscosity and flow curve models can be used to numerically investigate the non-Newtonian behavior of fluids. Although particle size, grain size distribution and concentration play a crucial role in determining the viscosity and flow behavior of suspensions and colloidal systems, they are either ignored or considered indirectly in almost all models. We present a mathematical extension of the widely used Cross flow curve model to account for the effect of concentration and particle size in modeling viscosity and flow curves. In particular, this study takes into account a variable total number of individual particles in unit volume, which is assumed to be constant in other models. The proposed extension allows the flow curve to model suspensions that are typically shear-thinning but can also be Newtonian, or shear-thickening for at different shear rates and concentrations. These considerations provide insight into studying and designing suspensions, colloidal systems, and other complex fluid–solid interactions.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570644324000418/pdfft?md5=9b18b482be513a6e7e882c767b78cb91&pid=1-s2.0-S1570644324000418-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing non-newtonian fluid modeling: A novel extension of the cross flow curve model\",\"authors\":\"\",\"doi\":\"10.1016/j.jher.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A number of viscosity and flow curve models can be used to numerically investigate the non-Newtonian behavior of fluids. Although particle size, grain size distribution and concentration play a crucial role in determining the viscosity and flow behavior of suspensions and colloidal systems, they are either ignored or considered indirectly in almost all models. We present a mathematical extension of the widely used Cross flow curve model to account for the effect of concentration and particle size in modeling viscosity and flow curves. In particular, this study takes into account a variable total number of individual particles in unit volume, which is assumed to be constant in other models. The proposed extension allows the flow curve to model suspensions that are typically shear-thinning but can also be Newtonian, or shear-thickening for at different shear rates and concentrations. These considerations provide insight into studying and designing suspensions, colloidal systems, and other complex fluid–solid interactions.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1570644324000418/pdfft?md5=9b18b482be513a6e7e882c767b78cb91&pid=1-s2.0-S1570644324000418-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644324000418\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644324000418","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

许多粘度和流动曲线模型可用于对流体的非牛顿行为进行数值研究。虽然粒度、粒度分布和浓度在决定悬浮液和胶体系统的粘度和流动行为方面起着至关重要的作用,但几乎所有模型都忽略或间接考虑了它们。我们对广泛使用的 Cross 流动曲线模型进行了数学扩展,以考虑浓度和粒度对粘度和流动曲线建模的影响。特别是,这项研究考虑到了单位体积内可变的单个颗粒总数,而在其他模型中,这一总数被假定为常数。拟议的扩展使流动曲线能够模拟典型的剪切稀化悬浮液,但也可以是牛顿型悬浮液,或在不同剪切速率和浓度下的剪切增稠型悬浮液。这些考虑因素为研究和设计悬浮液、胶体系统和其他复杂的流固相互作用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing non-newtonian fluid modeling: A novel extension of the cross flow curve model

A number of viscosity and flow curve models can be used to numerically investigate the non-Newtonian behavior of fluids. Although particle size, grain size distribution and concentration play a crucial role in determining the viscosity and flow behavior of suspensions and colloidal systems, they are either ignored or considered indirectly in almost all models. We present a mathematical extension of the widely used Cross flow curve model to account for the effect of concentration and particle size in modeling viscosity and flow curves. In particular, this study takes into account a variable total number of individual particles in unit volume, which is assumed to be constant in other models. The proposed extension allows the flow curve to model suspensions that are typically shear-thinning but can also be Newtonian, or shear-thickening for at different shear rates and concentrations. These considerations provide insight into studying and designing suspensions, colloidal systems, and other complex fluid–solid interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
期刊最新文献
Effect of submergence of sacrificial piles on local scour reduction at a bridge pier under U-type debris jam conditions Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation Assessment of the impact of greenhouse rainwater harvesting managed aquifer recharge on the groundwater system in the southern Jeju Island, South Korea: Implication from a numerical modeling approach Real-time prediction of the week-ahead flood index using hybrid deep learning algorithms with synoptic climate mode indices Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1