Shan Huang , Jingran Zhang , Huimin Zhang , Chuqiao Wang , Chenglong Zou , Yiran Zhang , Guangcan Zhu
{"title":"微生物燃料电池对生物反应的电场效应:综述","authors":"Shan Huang , Jingran Zhang , Huimin Zhang , Chuqiao Wang , Chenglong Zou , Yiran Zhang , Guangcan Zhu","doi":"10.1016/j.ibiod.2024.105886","DOIUrl":null,"url":null,"abstract":"<div><p>Many studies have used microbial fuel cell (MFC) to enhance biological reactions to improve the removal of pollutants, but the mechanisms of enhancement are unclear. The fundamental difference between biological reactions in MFC and traditional biological reactions lies in the presence of the electric field. This review analyzes the current research status of the mechanism of electron transfer by electro-active bacteria (EABs) in MFC system and the modulation effect of electric field on microorganisms, and summarizes the research progress on the enhancement mechanisms of nitrogen removal by MFC with a focus on biocathode denitrification. In addition, constructive suggestions on how to further clarifying the enhancement mechanism of MFC on biological responses have been also put forward. This review provides the theoretical basis for further investigation of the mechanisms of enhancement of other biological reactions by MFC.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"194 ","pages":"Article 105886"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric field effect of microbial fuel cells on biological reactions: A review\",\"authors\":\"Shan Huang , Jingran Zhang , Huimin Zhang , Chuqiao Wang , Chenglong Zou , Yiran Zhang , Guangcan Zhu\",\"doi\":\"10.1016/j.ibiod.2024.105886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many studies have used microbial fuel cell (MFC) to enhance biological reactions to improve the removal of pollutants, but the mechanisms of enhancement are unclear. The fundamental difference between biological reactions in MFC and traditional biological reactions lies in the presence of the electric field. This review analyzes the current research status of the mechanism of electron transfer by electro-active bacteria (EABs) in MFC system and the modulation effect of electric field on microorganisms, and summarizes the research progress on the enhancement mechanisms of nitrogen removal by MFC with a focus on biocathode denitrification. In addition, constructive suggestions on how to further clarifying the enhancement mechanism of MFC on biological responses have been also put forward. This review provides the theoretical basis for further investigation of the mechanisms of enhancement of other biological reactions by MFC.</p></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"194 \",\"pages\":\"Article 105886\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830524001574\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001574","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Electric field effect of microbial fuel cells on biological reactions: A review
Many studies have used microbial fuel cell (MFC) to enhance biological reactions to improve the removal of pollutants, but the mechanisms of enhancement are unclear. The fundamental difference between biological reactions in MFC and traditional biological reactions lies in the presence of the electric field. This review analyzes the current research status of the mechanism of electron transfer by electro-active bacteria (EABs) in MFC system and the modulation effect of electric field on microorganisms, and summarizes the research progress on the enhancement mechanisms of nitrogen removal by MFC with a focus on biocathode denitrification. In addition, constructive suggestions on how to further clarifying the enhancement mechanism of MFC on biological responses have been also put forward. This review provides the theoretical basis for further investigation of the mechanisms of enhancement of other biological reactions by MFC.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.