将高保真流固耦合应用于跨音速流动中的静态气动弹性

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-08-14 DOI:10.1016/j.ast.2024.109477
{"title":"将高保真流固耦合应用于跨音速流动中的静态气动弹性","authors":"","doi":"10.1016/j.ast.2024.109477","DOIUrl":null,"url":null,"abstract":"<div><p>Transonic flows at high Reynolds numbers can lead to high dynamic pressures and, consequently, to aerostructural deflections of aircraft structures. This study aims to develop and validate a high-fidelity static aeroelastic analysis environment that is efficient and that can be used in an industrial setting. The aerodynamics is represented by numerical solutions of the Reynolds-averaged Navier-Stokes equations with appropriate turbulence closures. The load transfer process uses finite element shape functions in order to distribute the aerodynamic loads into the structural discretization. The structural analysis employs a modal basis approach, and a wingtip deflection convergence study is performed to find an adequate modal basis size. Radial basis functions are used for the fluid mesh displacement, and the influence of the support radius is evaluated to determine the optimal values relative to the wing mean aerodynamic chord. The capability is tested using the static aeroelastic benchmarks of the High Reynolds Aerostructural Dynamics Project (HIRENASD) and NASA's Common Research Model (CRM). The static aeroelastic results demonstrate robustness and consistency for the aerodynamic coefficients, pressure distributions, and structural deflection predictions at different normalized dynamic pressure values and grid refinement levels.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-fidelity fluid-structure interaction applied to static aeroelasticity in transonic flows\",\"authors\":\"\",\"doi\":\"10.1016/j.ast.2024.109477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transonic flows at high Reynolds numbers can lead to high dynamic pressures and, consequently, to aerostructural deflections of aircraft structures. This study aims to develop and validate a high-fidelity static aeroelastic analysis environment that is efficient and that can be used in an industrial setting. The aerodynamics is represented by numerical solutions of the Reynolds-averaged Navier-Stokes equations with appropriate turbulence closures. The load transfer process uses finite element shape functions in order to distribute the aerodynamic loads into the structural discretization. The structural analysis employs a modal basis approach, and a wingtip deflection convergence study is performed to find an adequate modal basis size. Radial basis functions are used for the fluid mesh displacement, and the influence of the support radius is evaluated to determine the optimal values relative to the wing mean aerodynamic chord. The capability is tested using the static aeroelastic benchmarks of the High Reynolds Aerostructural Dynamics Project (HIRENASD) and NASA's Common Research Model (CRM). The static aeroelastic results demonstrate robustness and consistency for the aerodynamic coefficients, pressure distributions, and structural deflection predictions at different normalized dynamic pressure values and grid refinement levels.</p></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824006084\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006084","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

高雷诺数的跨音速气流可导致高动态压力,进而导致飞机结构的气动变形。本研究旨在开发和验证一种高效、可用于工业环境的高保真静态气动弹性分析环境。空气动力学由具有适当湍流闭合的雷诺平均纳维-斯托克斯方程的数值解来表示。载荷传递过程使用有限元形状函数,以便将空气动力载荷分配到结构离散化中。结构分析采用模态基础方法,并进行了翼尖挠度收敛研究,以找到适当的模态基础尺寸。流体网格位移采用径向基函数,并评估了支撑半径的影响,以确定相对于机翼平均气动弦的最佳值。使用高雷诺气动结构动力学项目(HIRENASD)和美国国家航空航天局(NASA)的通用研究模型(CRM)的静态气动弹性基准对该能力进行了测试。静态气动弹性结果表明,在不同的归一化动态压力值和网格细化水平下,气动系数、压力分布和结构挠度预测具有稳健性和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-fidelity fluid-structure interaction applied to static aeroelasticity in transonic flows

Transonic flows at high Reynolds numbers can lead to high dynamic pressures and, consequently, to aerostructural deflections of aircraft structures. This study aims to develop and validate a high-fidelity static aeroelastic analysis environment that is efficient and that can be used in an industrial setting. The aerodynamics is represented by numerical solutions of the Reynolds-averaged Navier-Stokes equations with appropriate turbulence closures. The load transfer process uses finite element shape functions in order to distribute the aerodynamic loads into the structural discretization. The structural analysis employs a modal basis approach, and a wingtip deflection convergence study is performed to find an adequate modal basis size. Radial basis functions are used for the fluid mesh displacement, and the influence of the support radius is evaluated to determine the optimal values relative to the wing mean aerodynamic chord. The capability is tested using the static aeroelastic benchmarks of the High Reynolds Aerostructural Dynamics Project (HIRENASD) and NASA's Common Research Model (CRM). The static aeroelastic results demonstrate robustness and consistency for the aerodynamic coefficients, pressure distributions, and structural deflection predictions at different normalized dynamic pressure values and grid refinement levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
Experimental study on loss and flow mechanism of variable stator vanes in high-pressure compressor with bleed Shock wave and fully turbulent boundary layer interaction controlled by surface arc plasma actuation Iterative control framework with application to guidance and attitude control of rockets Experimental and numerical study on the mechanism of leakage flow influence on the performance of high-speed diffuser cascade Point-enhanced convolutional neural network: A novel deep learning method for transonic wall-bounded flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1