利用混合深度学习和基于教学的优化提高风能预测精度

Mohd Herwan Sulaiman , Zuriani Mustaffa
{"title":"利用混合深度学习和基于教学的优化提高风能预测精度","authors":"Mohd Herwan Sulaiman ,&nbsp;Zuriani Mustaffa","doi":"10.1016/j.cles.2024.100139","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting wind power generation is crucial for ensuring grid security and the competitiveness of the power market. This paper presents an innovative approach that combines deep learning (DL) with Teaching-Learning-Based Optimization (TLBO) to predict wind power output accurately. Using a real dataset spanning diverse weather conditions and turbine specifications collected between January 2018 and March 2020, the study employs 18 features as inputs, including Ambient Temperature, Wind Direction, and Wind Speed, with real power output in kW as the target variable. Metaheuristic algorithms including Particle Swarm Optimization (PSO), Barnacles Mating Optimizer (BMO), Biogeography-Based Optimization (BBO), and Firefly Algorithm (FA) are comprehensively compared for model optimization. TLBO-DL consistently provides forecasts that closely align with actual wind power values across instances, substantiated by its low RMSE of 98.7601, indicating effective minimization of errors in wind power forecasting. Comparative analysis with other algorithms reveals that TLBO-DL outperforms PSO-DL (RMSE: 102.6627), BMO-DL (RMSE: 132.4839), BBO-DL (RMSE: 103.8517), and FA-DL (RMSE: 104.7282) in terms of overall forecasting accuracy. The variations in the performance of other algorithms across instances highlight the robustness and effectiveness of TLBO-DL in achieving accurate wind power forecasts. Overall, TLBO-DL emerges as a reliable and superior algorithm for wind power forecasting, consistently providing accurate forecasts across a range of instances.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000335/pdfft?md5=a87d785eb724965787507a41bf1ff279&pid=1-s2.0-S2772783124000335-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing wind power forecasting accuracy with hybrid deep learning and teaching-learning-based optimization\",\"authors\":\"Mohd Herwan Sulaiman ,&nbsp;Zuriani Mustaffa\",\"doi\":\"10.1016/j.cles.2024.100139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forecasting wind power generation is crucial for ensuring grid security and the competitiveness of the power market. This paper presents an innovative approach that combines deep learning (DL) with Teaching-Learning-Based Optimization (TLBO) to predict wind power output accurately. Using a real dataset spanning diverse weather conditions and turbine specifications collected between January 2018 and March 2020, the study employs 18 features as inputs, including Ambient Temperature, Wind Direction, and Wind Speed, with real power output in kW as the target variable. Metaheuristic algorithms including Particle Swarm Optimization (PSO), Barnacles Mating Optimizer (BMO), Biogeography-Based Optimization (BBO), and Firefly Algorithm (FA) are comprehensively compared for model optimization. TLBO-DL consistently provides forecasts that closely align with actual wind power values across instances, substantiated by its low RMSE of 98.7601, indicating effective minimization of errors in wind power forecasting. Comparative analysis with other algorithms reveals that TLBO-DL outperforms PSO-DL (RMSE: 102.6627), BMO-DL (RMSE: 132.4839), BBO-DL (RMSE: 103.8517), and FA-DL (RMSE: 104.7282) in terms of overall forecasting accuracy. The variations in the performance of other algorithms across instances highlight the robustness and effectiveness of TLBO-DL in achieving accurate wind power forecasts. Overall, TLBO-DL emerges as a reliable and superior algorithm for wind power forecasting, consistently providing accurate forecasts across a range of instances.</p></div>\",\"PeriodicalId\":100252,\"journal\":{\"name\":\"Cleaner Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772783124000335/pdfft?md5=a87d785eb724965787507a41bf1ff279&pid=1-s2.0-S2772783124000335-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772783124000335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测风力发电量对于确保电网安全和电力市场竞争力至关重要。本文提出了一种创新方法,将深度学习(DL)与基于教学学习的优化(TLBO)相结合,以准确预测风力发电量。该研究利用 2018 年 1 月至 2020 年 3 月期间收集的跨越各种天气条件和涡轮机规格的真实数据集,采用 18 种特征作为输入,包括环境温度、风向和风速,以千瓦为单位的实际功率输出作为目标变量。综合比较了粒子群优化算法(PSO)、藤壶交配优化算法(BMO)、基于生物地理学的优化算法(BBO)和萤火虫算法(FA)等元追求算法,对模型进行优化。TLBO-DL 的 RMSE 值低至 98.7601,表明其在风力发电预测中有效地减少了误差。与其他算法的对比分析表明,TLBO-DL 的总体预测精度优于 PSO-DL(RMSE:102.6627)、BMO-DL(RMSE:132.4839)、BBO-DL(RMSE:103.8517)和 FA-DL(RMSE:104.7282)。其他算法在不同情况下的性能差异凸显了 TLBO-DL 在实现准确风电预测方面的稳健性和有效性。总体而言,TLBO-DL 是一种可靠且优越的风电预测算法,在各种情况下都能持续提供准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing wind power forecasting accuracy with hybrid deep learning and teaching-learning-based optimization

Forecasting wind power generation is crucial for ensuring grid security and the competitiveness of the power market. This paper presents an innovative approach that combines deep learning (DL) with Teaching-Learning-Based Optimization (TLBO) to predict wind power output accurately. Using a real dataset spanning diverse weather conditions and turbine specifications collected between January 2018 and March 2020, the study employs 18 features as inputs, including Ambient Temperature, Wind Direction, and Wind Speed, with real power output in kW as the target variable. Metaheuristic algorithms including Particle Swarm Optimization (PSO), Barnacles Mating Optimizer (BMO), Biogeography-Based Optimization (BBO), and Firefly Algorithm (FA) are comprehensively compared for model optimization. TLBO-DL consistently provides forecasts that closely align with actual wind power values across instances, substantiated by its low RMSE of 98.7601, indicating effective minimization of errors in wind power forecasting. Comparative analysis with other algorithms reveals that TLBO-DL outperforms PSO-DL (RMSE: 102.6627), BMO-DL (RMSE: 132.4839), BBO-DL (RMSE: 103.8517), and FA-DL (RMSE: 104.7282) in terms of overall forecasting accuracy. The variations in the performance of other algorithms across instances highlight the robustness and effectiveness of TLBO-DL in achieving accurate wind power forecasts. Overall, TLBO-DL emerges as a reliable and superior algorithm for wind power forecasting, consistently providing accurate forecasts across a range of instances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1