{"title":"超声波分解内分泌干扰化合物--综述","authors":"","doi":"10.1016/j.ultsonch.2024.107026","DOIUrl":null,"url":null,"abstract":"<div><p>Endocrine disrupting compounds (EDCs) need to be removed by efficient treatment methods as they are a major concern for both human and environmental health. To reduce the impact of EDCs in water, this review examines the use of ultrasonic degradation processes. Following an overview of EDCs and their origins, the basic concepts of sonochemistry are examined, highlighting the potential of ultrasound in chemical reactions. An in-depth analysis of the variables that affect the ultrasonic degradation of EDCs, such as frequency, intensity/power, temperature and solution chemistry, prepares the reader for a case study investigation focusing on specific EDCs. The study also looks at synergistic methods, emphasizing how hybrid ultrasonic systems can improve removal efficiency. The study provides a comprehensive overview of the use of sonochemistry in the treatment of EDCs by addressing current issues and suggesting future research directions. The aim of this review paper is to provide insightful analysis and useful suggestions for scientists working on EDC remediation projects.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002748/pdfft?md5=cae4cc0b1e5ba41a12b63f00555dcfa7&pid=1-s2.0-S1350417724002748-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic decomposition of endocrine disrupting Compounds − A review\",\"authors\":\"\",\"doi\":\"10.1016/j.ultsonch.2024.107026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Endocrine disrupting compounds (EDCs) need to be removed by efficient treatment methods as they are a major concern for both human and environmental health. To reduce the impact of EDCs in water, this review examines the use of ultrasonic degradation processes. Following an overview of EDCs and their origins, the basic concepts of sonochemistry are examined, highlighting the potential of ultrasound in chemical reactions. An in-depth analysis of the variables that affect the ultrasonic degradation of EDCs, such as frequency, intensity/power, temperature and solution chemistry, prepares the reader for a case study investigation focusing on specific EDCs. The study also looks at synergistic methods, emphasizing how hybrid ultrasonic systems can improve removal efficiency. The study provides a comprehensive overview of the use of sonochemistry in the treatment of EDCs by addressing current issues and suggesting future research directions. The aim of this review paper is to provide insightful analysis and useful suggestions for scientists working on EDC remediation projects.</p></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350417724002748/pdfft?md5=cae4cc0b1e5ba41a12b63f00555dcfa7&pid=1-s2.0-S1350417724002748-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724002748\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002748","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
摘要
内分泌干扰化合物(EDCs)是人类和环境健康的一个主要问题,因此需要通过有效的处理方法将其去除。为了减少 EDCs 对水的影响,本综述探讨了超声波降解过程的使用。在概述了 EDC 及其起源之后,研究了超声化学的基本概念,强调了超声在化学反应中的潜力。对影响 EDC 超声降解的变量(如频率、强度/功率、温度和溶液化学性质)进行了深入分析,为读者开展以特定 EDC 为重点的案例研究做好准备。研究还探讨了协同方法,强调了混合超声系统如何提高去除效率。本研究通过探讨当前的问题和提出未来的研究方向,全面概述了超声化学在处理 EDC 方面的应用。本综述论文旨在为从事 EDC 修复项目的科学家提供有见地的分析和有用的建议。
Ultrasonic decomposition of endocrine disrupting Compounds − A review
Endocrine disrupting compounds (EDCs) need to be removed by efficient treatment methods as they are a major concern for both human and environmental health. To reduce the impact of EDCs in water, this review examines the use of ultrasonic degradation processes. Following an overview of EDCs and their origins, the basic concepts of sonochemistry are examined, highlighting the potential of ultrasound in chemical reactions. An in-depth analysis of the variables that affect the ultrasonic degradation of EDCs, such as frequency, intensity/power, temperature and solution chemistry, prepares the reader for a case study investigation focusing on specific EDCs. The study also looks at synergistic methods, emphasizing how hybrid ultrasonic systems can improve removal efficiency. The study provides a comprehensive overview of the use of sonochemistry in the treatment of EDCs by addressing current issues and suggesting future research directions. The aim of this review paper is to provide insightful analysis and useful suggestions for scientists working on EDC remediation projects.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.