罗勒籽胶涂层和超声波预处理对马铃薯片的油炸时间、吸油率、硬度、颜色指数和感官特性的影响

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2024-08-17 DOI:10.1016/j.ultsonch.2024.107035
{"title":"罗勒籽胶涂层和超声波预处理对马铃薯片的油炸时间、吸油率、硬度、颜色指数和感官特性的影响","authors":"","doi":"10.1016/j.ultsonch.2024.107035","DOIUrl":null,"url":null,"abstract":"<div><p>Fried food products have low oil content with improved nutritional quality, higher crispiness, and better sensory attributes. Edible coatings can decrease the excessive oil uptake in deep-fat fried food products. Furthermore, ultrasound treatment before frying process decreased oil uptake of food products. So, in this study, the impact of gum edible coating and ultrasonic pretreatment (at two different power levels of 75 and 150 W) on the frying time of potato slices, and moisture percent, oil uptake, texture hardness, surface area change, color parameters (lightness, redness, yellowness, and total color change), and sensory attributes of fried potato slices were examined. Edible coating with basil seed gum (BSG) and ultrasonic pretreatment significantly increased the frying time of the slices (p &lt; 0.05). The average moisture content of the fried slices changed from 49.48 % to 60.55 %, and was further increased by edible coating and ultrasonic treatment. The highest (26.92 %) and lowest (14.56 %) oil uptake were for the uncoated and coated-sonicated (150 W) fried potato slices, respectively. The ultrasound pretreatment significantly increased the hardness of fried potato slices (p &lt; 0.05). The low and high intensity ultrasonic pretreatment (75 W and 150 W, respectively) significantly decreased the crust area change of fried potato slices (p &lt; 0.05). The average lightness index of the fried samples changed from 63.30 to 71.58, and increased with increasing ultrasonic power. The minimum redness, yellowness, and total color change indexes were for the coated and high-power sonicated (150 W) samples, respectively. The highest appearance, odor, texture, flavor, and overall acceptance were for the coated and high-power sonicated (150 W) sample.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002839/pdfft?md5=3de216dd74e4d2284d11c54a22cddd4f&pid=1-s2.0-S1350417724002839-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of basil seed gum coating and ultrasound pretreatment on frying time, oil uptake, hardness, color indexes, and sensory properties of potato slices\",\"authors\":\"\",\"doi\":\"10.1016/j.ultsonch.2024.107035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fried food products have low oil content with improved nutritional quality, higher crispiness, and better sensory attributes. Edible coatings can decrease the excessive oil uptake in deep-fat fried food products. Furthermore, ultrasound treatment before frying process decreased oil uptake of food products. So, in this study, the impact of gum edible coating and ultrasonic pretreatment (at two different power levels of 75 and 150 W) on the frying time of potato slices, and moisture percent, oil uptake, texture hardness, surface area change, color parameters (lightness, redness, yellowness, and total color change), and sensory attributes of fried potato slices were examined. Edible coating with basil seed gum (BSG) and ultrasonic pretreatment significantly increased the frying time of the slices (p &lt; 0.05). The average moisture content of the fried slices changed from 49.48 % to 60.55 %, and was further increased by edible coating and ultrasonic treatment. The highest (26.92 %) and lowest (14.56 %) oil uptake were for the uncoated and coated-sonicated (150 W) fried potato slices, respectively. The ultrasound pretreatment significantly increased the hardness of fried potato slices (p &lt; 0.05). The low and high intensity ultrasonic pretreatment (75 W and 150 W, respectively) significantly decreased the crust area change of fried potato slices (p &lt; 0.05). The average lightness index of the fried samples changed from 63.30 to 71.58, and increased with increasing ultrasonic power. The minimum redness, yellowness, and total color change indexes were for the coated and high-power sonicated (150 W) samples, respectively. The highest appearance, odor, texture, flavor, and overall acceptance were for the coated and high-power sonicated (150 W) sample.</p></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350417724002839/pdfft?md5=3de216dd74e4d2284d11c54a22cddd4f&pid=1-s2.0-S1350417724002839-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724002839\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002839","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

油炸食品的含油量低,但营养质量更好,酥脆度更高,感官属性更佳。可食用涂层可减少油炸食品的过量摄油。此外,油炸前的超声波处理也能降低食品的吸油率。因此,本研究考察了食用胶涂层和超声波预处理(75 W 和 150 W 两种不同功率)对油炸马铃薯片的油炸时间、水分百分比、吸油量、质地硬度、表面积变化、颜色参数(亮度、红度、黄度和总颜色变化)和感官属性的影响。罗勒籽胶(BSG)食用涂层和超声波预处理显著延长了油炸马铃薯片的时间(p < 0.05)。油炸切片的平均含水量从 49.48 % 变为 60.55 %,食用涂层和超声波处理进一步提高了含水量。未涂层和涂层-超声波(150 W)油炸马铃薯片的吸油量分别最高(26.92 %)和最低(14.56 %)。超声波预处理明显增加了油炸马铃薯片的硬度(p < 0.05)。低强度和高强度超声波预处理(分别为 75 W 和 150 W)明显降低了油炸马铃薯片的表皮面积变化(p < 0.05)。油炸样品的平均亮度指数从 63.30 变为 71.58,并随超声波功率的增加而增加。涂层样品和高超声功率(150 瓦)样品的红度、黄度和总变色指数分别最小。涂层样品和大功率超声(150 瓦)样品的外观、气味、质地、风味和总体接受度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of basil seed gum coating and ultrasound pretreatment on frying time, oil uptake, hardness, color indexes, and sensory properties of potato slices

Fried food products have low oil content with improved nutritional quality, higher crispiness, and better sensory attributes. Edible coatings can decrease the excessive oil uptake in deep-fat fried food products. Furthermore, ultrasound treatment before frying process decreased oil uptake of food products. So, in this study, the impact of gum edible coating and ultrasonic pretreatment (at two different power levels of 75 and 150 W) on the frying time of potato slices, and moisture percent, oil uptake, texture hardness, surface area change, color parameters (lightness, redness, yellowness, and total color change), and sensory attributes of fried potato slices were examined. Edible coating with basil seed gum (BSG) and ultrasonic pretreatment significantly increased the frying time of the slices (p < 0.05). The average moisture content of the fried slices changed from 49.48 % to 60.55 %, and was further increased by edible coating and ultrasonic treatment. The highest (26.92 %) and lowest (14.56 %) oil uptake were for the uncoated and coated-sonicated (150 W) fried potato slices, respectively. The ultrasound pretreatment significantly increased the hardness of fried potato slices (p < 0.05). The low and high intensity ultrasonic pretreatment (75 W and 150 W, respectively) significantly decreased the crust area change of fried potato slices (p < 0.05). The average lightness index of the fried samples changed from 63.30 to 71.58, and increased with increasing ultrasonic power. The minimum redness, yellowness, and total color change indexes were for the coated and high-power sonicated (150 W) samples, respectively. The highest appearance, odor, texture, flavor, and overall acceptance were for the coated and high-power sonicated (150 W) sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Multi-frequency power ultrasound (MFPU) pretreatment of crayfish (Procambarus clarkii): Effect on the enzymatic hydrolysis process and subsequent Maillard reaction Ultrasound effect on flavor profile of beef jerky produced with partial potassium salt substitute based on GC-IMS technology Ultrasound-assisted extraction of triterpenoids from Chaenomeles speciosa leaves: Process optimization, adsorptive enrichment, chemical profiling, and protection against ulcerative colitis Numerical investigation of three-dimensional effects of hydrodynamic cavitation in a Venturi tube Cutting behaviors of cortical bone ultrasonic vibration-assisted cutting immersed in physiological saline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1