烧结温度对掺镁铋铁氧体多铁性的影响

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Solid State Communications Pub Date : 2024-08-17 DOI:10.1016/j.ssc.2024.115656
Priya Prajapati, Kirti Bera, Renuka Pithiya, Devang Pandya, Akshay Lila, Thaker Amisha, Surojit Bera, Jahnviba Zala, Gautam Patadiya, P.V. Kanjariya
{"title":"烧结温度对掺镁铋铁氧体多铁性的影响","authors":"Priya Prajapati,&nbsp;Kirti Bera,&nbsp;Renuka Pithiya,&nbsp;Devang Pandya,&nbsp;Akshay Lila,&nbsp;Thaker Amisha,&nbsp;Surojit Bera,&nbsp;Jahnviba Zala,&nbsp;Gautam Patadiya,&nbsp;P.V. Kanjariya","doi":"10.1016/j.ssc.2024.115656","DOIUrl":null,"url":null,"abstract":"<div><p>The research findings from a thorough examination of the impact of sintering temperature are presented in this publication on structural, ferroelectric, ferromagnetic and dielectric properties of Mg-doped Bismuth Ferrite. Bi<sub>0.88</sub>Mg<sub>0.12</sub>FeO<sub>3</sub> (BMFO) was synthesized using a solid-state reaction technique and sintered at three different temperatures: 750 °C, 800 °C and 830 °C. Structural analysis was performed using Rietveld refinement of XRD data, which confirms the presence of perovskite phase with rhombohedral structure in all samples and also changes in lattice parameters that result from sintering temperature changes. The average crystalline size as well as the lattice strain are calculated using the Williamson-Hall method. The loss tangent and dielectric constant have been examined as a function of frequency revealing a considerable improvement in dielectric properties. SEM analysis was performed to identify the microstructural property of the samples. Ferroelectric properties were studied using a P-E loop which confirms the enhancement in the ferroelectric property as sintering temperature increases. The improvement in the multiferroic nature will be discussed in light of the sintering temperature effect on Mg-doped Bismuth Ferrite.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"392 ","pages":"Article 115656"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of sintering temperature on multiferroic properties of Mg-doped Bismuth Ferrite\",\"authors\":\"Priya Prajapati,&nbsp;Kirti Bera,&nbsp;Renuka Pithiya,&nbsp;Devang Pandya,&nbsp;Akshay Lila,&nbsp;Thaker Amisha,&nbsp;Surojit Bera,&nbsp;Jahnviba Zala,&nbsp;Gautam Patadiya,&nbsp;P.V. Kanjariya\",\"doi\":\"10.1016/j.ssc.2024.115656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research findings from a thorough examination of the impact of sintering temperature are presented in this publication on structural, ferroelectric, ferromagnetic and dielectric properties of Mg-doped Bismuth Ferrite. Bi<sub>0.88</sub>Mg<sub>0.12</sub>FeO<sub>3</sub> (BMFO) was synthesized using a solid-state reaction technique and sintered at three different temperatures: 750 °C, 800 °C and 830 °C. Structural analysis was performed using Rietveld refinement of XRD data, which confirms the presence of perovskite phase with rhombohedral structure in all samples and also changes in lattice parameters that result from sintering temperature changes. The average crystalline size as well as the lattice strain are calculated using the Williamson-Hall method. The loss tangent and dielectric constant have been examined as a function of frequency revealing a considerable improvement in dielectric properties. SEM analysis was performed to identify the microstructural property of the samples. Ferroelectric properties were studied using a P-E loop which confirms the enhancement in the ferroelectric property as sintering temperature increases. The improvement in the multiferroic nature will be discussed in light of the sintering temperature effect on Mg-doped Bismuth Ferrite.</p></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"392 \",\"pages\":\"Article 115656\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824002333\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002333","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本出版物介绍了烧结温度对掺镁铁氧体铋的结构、铁电、铁磁和介电性质影响的深入研究结果。Bi0.88Mg0.12FeO3 (BMFO) 采用固态反应技术合成,并在三种不同温度下烧结:750 °C、800 °C和 830 °C。通过对 XRD 数据进行里特维尔德细化,进行了结构分析,证实了所有样品中都存在斜方体结构的包晶相,以及烧结温度变化导致的晶格参数变化。平均晶体尺寸和晶格应变是用威廉森-霍尔法计算得出的。损耗正切和介电常数随频率的变化而变化,显示出介电性能的显著改善。为了确定样品的微观结构特性,还进行了 SEM 分析。使用 P-E 回路研究了铁电特性,结果证实铁电特性随着烧结温度的升高而增强。我们将根据烧结温度对掺镁铁氧体铋的影响来讨论多铁氧体性质的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of sintering temperature on multiferroic properties of Mg-doped Bismuth Ferrite

The research findings from a thorough examination of the impact of sintering temperature are presented in this publication on structural, ferroelectric, ferromagnetic and dielectric properties of Mg-doped Bismuth Ferrite. Bi0.88Mg0.12FeO3 (BMFO) was synthesized using a solid-state reaction technique and sintered at three different temperatures: 750 °C, 800 °C and 830 °C. Structural analysis was performed using Rietveld refinement of XRD data, which confirms the presence of perovskite phase with rhombohedral structure in all samples and also changes in lattice parameters that result from sintering temperature changes. The average crystalline size as well as the lattice strain are calculated using the Williamson-Hall method. The loss tangent and dielectric constant have been examined as a function of frequency revealing a considerable improvement in dielectric properties. SEM analysis was performed to identify the microstructural property of the samples. Ferroelectric properties were studied using a P-E loop which confirms the enhancement in the ferroelectric property as sintering temperature increases. The improvement in the multiferroic nature will be discussed in light of the sintering temperature effect on Mg-doped Bismuth Ferrite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
期刊最新文献
Tailoring structural, morphological, and magnetic properties of Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 hexaferrites via Ni substitution Tuning band gap and improving optoelectronic properties of lead-free halide perovskites FrMI3 (M = Ge, Sn) under hydrostatic pressure The theoretical investigation of the electronic and optical properties of Fe-doped anatase TiO2 Chemical and structural features of spin-coated magnesium oxide (MgO) and its impact on the barrier parameters and current conduction process of Au/undoped-InP Schottky contact as an interfacial layer High pressure and high temperature synthesis of a new boron carbide phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1