Abdul Ghafoor , Manzoor Hussain , Danyal Ahmad , Shams Ul Arifeen
{"title":"具有局部分数导数的一维和二维非线性广义本杰明-博纳-马霍尼布尔格斯方程的近似值","authors":"Abdul Ghafoor , Manzoor Hussain , Danyal Ahmad , Shams Ul Arifeen","doi":"10.1016/j.camwa.2024.07.032","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents, a numerical method for the solutions of the generalized nonlinear Benjamin-Bona-Mahony-Burgers' equation, with variable order local time fractional derivative. This derivative is expressed as a product of two functions, the usual integer order time derivative, and a function of time having a fractional exponent. Then, forward difference approximation is used for time derivative. The unknown solution of the differential problem and corresponding derivatives are estimated using Haar wavelet approximations (HWA). The collocation procedure is then implemented in HWA, to transform the given model to the system of linear algebraic equations for the determination of unknown constant coefficient of the Haar wavelet series, which update the derivatives and the numerical solutions. The sufficient condition is established for the stability of the proposed technique, and then verified computationally. To check the performance of the scheme, few illustrative examples in one and two dimensions along with <span><math><msub><mrow><mi>l</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> error norms are also given. Besides this, the computational convergence rate is calculated for both type equations. Additionally, computed solutions are compared with available results in literature. Simulations and graphical data discloses, that suggested scheme works well for such complex problems.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of one and two dimensional nonlinear generalized Benjamin-Bona-Mahony Burgers' equation with local fractional derivative\",\"authors\":\"Abdul Ghafoor , Manzoor Hussain , Danyal Ahmad , Shams Ul Arifeen\",\"doi\":\"10.1016/j.camwa.2024.07.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents, a numerical method for the solutions of the generalized nonlinear Benjamin-Bona-Mahony-Burgers' equation, with variable order local time fractional derivative. This derivative is expressed as a product of two functions, the usual integer order time derivative, and a function of time having a fractional exponent. Then, forward difference approximation is used for time derivative. The unknown solution of the differential problem and corresponding derivatives are estimated using Haar wavelet approximations (HWA). The collocation procedure is then implemented in HWA, to transform the given model to the system of linear algebraic equations for the determination of unknown constant coefficient of the Haar wavelet series, which update the derivatives and the numerical solutions. The sufficient condition is established for the stability of the proposed technique, and then verified computationally. To check the performance of the scheme, few illustrative examples in one and two dimensions along with <span><math><msub><mrow><mi>l</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> error norms are also given. Besides this, the computational convergence rate is calculated for both type equations. Additionally, computed solutions are compared with available results in literature. Simulations and graphical data discloses, that suggested scheme works well for such complex problems.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003390\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003390","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Approximation of one and two dimensional nonlinear generalized Benjamin-Bona-Mahony Burgers' equation with local fractional derivative
This study presents, a numerical method for the solutions of the generalized nonlinear Benjamin-Bona-Mahony-Burgers' equation, with variable order local time fractional derivative. This derivative is expressed as a product of two functions, the usual integer order time derivative, and a function of time having a fractional exponent. Then, forward difference approximation is used for time derivative. The unknown solution of the differential problem and corresponding derivatives are estimated using Haar wavelet approximations (HWA). The collocation procedure is then implemented in HWA, to transform the given model to the system of linear algebraic equations for the determination of unknown constant coefficient of the Haar wavelet series, which update the derivatives and the numerical solutions. The sufficient condition is established for the stability of the proposed technique, and then verified computationally. To check the performance of the scheme, few illustrative examples in one and two dimensions along with and error norms are also given. Besides this, the computational convergence rate is calculated for both type equations. Additionally, computed solutions are compared with available results in literature. Simulations and graphical data discloses, that suggested scheme works well for such complex problems.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).