通过捆绑区间 MDP 加强数据驱动的随机控制

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-06-20 DOI:10.1109/LCSYS.2024.3417852
Rudi Coppola;Andrea Peruffo;Licio Romao;Alessandro Abate;Manuel Mazo
{"title":"通过捆绑区间 MDP 加强数据驱动的随机控制","authors":"Rudi Coppola;Andrea Peruffo;Licio Romao;Alessandro Abate;Manuel Mazo","doi":"10.1109/LCSYS.2024.3417852","DOIUrl":null,"url":null,"abstract":"The abstraction of dynamical systems is a powerful tool that enables the design of feedback controllers using a correct-by-design framework. We investigate a novel scheme to obtain data-driven abstractions of discrete-time stochastic processes in terms of richer discrete stochastic models, whose actions lead to nondeterministic transitions over the space of probability measures. The data-driven component of the proposed methodology lies in the fact that we only assume samples from an unknown probability distribution. We also rely on the model of the underlying dynamics to build our abstraction through backward reachability computations. The nondeterminism in the probability space is captured by a collection of Markov Processes, and we identify how this model can improve upon existing abstraction techniques in terms of satisfying temporal properties, such as safety or reach-avoid. The connection between the discrete and the underlying dynamics is made formal through the use of the scenario approach theory. Numerical experiments illustrate the advantages and main limitations of the proposed techniques with respect to existing approaches.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Data-Driven Stochastic Control via Bundled Interval MDP\",\"authors\":\"Rudi Coppola;Andrea Peruffo;Licio Romao;Alessandro Abate;Manuel Mazo\",\"doi\":\"10.1109/LCSYS.2024.3417852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abstraction of dynamical systems is a powerful tool that enables the design of feedback controllers using a correct-by-design framework. We investigate a novel scheme to obtain data-driven abstractions of discrete-time stochastic processes in terms of richer discrete stochastic models, whose actions lead to nondeterministic transitions over the space of probability measures. The data-driven component of the proposed methodology lies in the fact that we only assume samples from an unknown probability distribution. We also rely on the model of the underlying dynamics to build our abstraction through backward reachability computations. The nondeterminism in the probability space is captured by a collection of Markov Processes, and we identify how this model can improve upon existing abstraction techniques in terms of satisfying temporal properties, such as safety or reach-avoid. The connection between the discrete and the underlying dynamics is made formal through the use of the scenario approach theory. Numerical experiments illustrate the advantages and main limitations of the proposed techniques with respect to existing approaches.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10566855/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10566855/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对动态系统进行抽象是一种强大的工具,可以利用 "按设计纠正 "框架设计反馈控制器。我们研究了一种新方案,通过更丰富的离散随机模型获得数据驱动的离散时间随机过程抽象,这些模型的动作会导致概率度量空间上的非确定性转换。所提方法的数据驱动部分在于,我们只假设样本来自未知概率分布。我们还依靠底层动力学模型,通过后向可达性计算建立我们的抽象。概率空间中的非确定性由马尔可夫过程集合来捕捉,我们确定了这一模型如何在满足时间属性(如安全性或到达-避免)方面改进现有的抽象技术。通过使用情景方法理论,离散模型与底层动态模型之间的联系变得正式起来。数值实验说明了所提出的技术相对于现有方法的优势和主要局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Data-Driven Stochastic Control via Bundled Interval MDP
The abstraction of dynamical systems is a powerful tool that enables the design of feedback controllers using a correct-by-design framework. We investigate a novel scheme to obtain data-driven abstractions of discrete-time stochastic processes in terms of richer discrete stochastic models, whose actions lead to nondeterministic transitions over the space of probability measures. The data-driven component of the proposed methodology lies in the fact that we only assume samples from an unknown probability distribution. We also rely on the model of the underlying dynamics to build our abstraction through backward reachability computations. The nondeterminism in the probability space is captured by a collection of Markov Processes, and we identify how this model can improve upon existing abstraction techniques in terms of satisfying temporal properties, such as safety or reach-avoid. The connection between the discrete and the underlying dynamics is made formal through the use of the scenario approach theory. Numerical experiments illustrate the advantages and main limitations of the proposed techniques with respect to existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1