Duy-Thuc Nguyen, Min-Jun Baek, Sang Min Lee, Dahan Kim, So-Yeol Yoo, Jae-Young Lee, Dae-Duk Kim
{"title":"光漂白介导的电荷可转换环糊精纳米粒子实现肿瘤深层穿透,用于直肠癌治疗技术","authors":"Duy-Thuc Nguyen, Min-Jun Baek, Sang Min Lee, Dahan Kim, So-Yeol Yoo, Jae-Young Lee, Dae-Duk Kim","doi":"10.1038/s41565-024-01757-4","DOIUrl":null,"url":null,"abstract":"Although charge-converting nanoparticles (NPs) potentially penetrate tumours deeply, conventional charge conversion strategies possess limitations, including low selectivity and slow, inconsistent conversion rate within the tumour microenvironment. In this study, we synthesized a zwitterionic near-infrared cyclodextrin derivative of heptamethine cyanine and complexed it with pheophorbide-conjugated ferrocene to produce multifunctional theranostic nanotherapeutics. Our NPs demonstrated enhanced tumour-targeting ability, enabling the highly specific imaging of rectal tumours, with tumour-to-rectum signal ratios reaching up to 7.8. The zwitterionic surface charge of the NPs was rapidly converted to a cationic charge within the tumours on 880 nm near-infrared laser irradiation, promoting the tumoural penetration of NPs via transcytosis. After penetration, photodynamic/chemodynamic therapy was initiated using a 660 nm laser. Our NPs eradicated clinically relevant-sized heterotopic tumours (~250 mm3) and orthotopic rectal tumours, displaying their potential as theranostic nanoplatforms for targeting rectal cancer. The photobleaching property of heptamethine cyanine enables efficient charge conversion of nanoparticles. Here heptamethine-cyanine-based nanoparticles achieve specific tumour imaging, deep tumour penetration and high therapeutic efficacy in rectal cancer animal models.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 11","pages":"1723-1734"},"PeriodicalIF":38.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photobleaching-mediated charge-convertible cyclodextrin nanoparticles achieve deep tumour penetration for rectal cancer theranostics\",\"authors\":\"Duy-Thuc Nguyen, Min-Jun Baek, Sang Min Lee, Dahan Kim, So-Yeol Yoo, Jae-Young Lee, Dae-Duk Kim\",\"doi\":\"10.1038/s41565-024-01757-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although charge-converting nanoparticles (NPs) potentially penetrate tumours deeply, conventional charge conversion strategies possess limitations, including low selectivity and slow, inconsistent conversion rate within the tumour microenvironment. In this study, we synthesized a zwitterionic near-infrared cyclodextrin derivative of heptamethine cyanine and complexed it with pheophorbide-conjugated ferrocene to produce multifunctional theranostic nanotherapeutics. Our NPs demonstrated enhanced tumour-targeting ability, enabling the highly specific imaging of rectal tumours, with tumour-to-rectum signal ratios reaching up to 7.8. The zwitterionic surface charge of the NPs was rapidly converted to a cationic charge within the tumours on 880 nm near-infrared laser irradiation, promoting the tumoural penetration of NPs via transcytosis. After penetration, photodynamic/chemodynamic therapy was initiated using a 660 nm laser. Our NPs eradicated clinically relevant-sized heterotopic tumours (~250 mm3) and orthotopic rectal tumours, displaying their potential as theranostic nanoplatforms for targeting rectal cancer. The photobleaching property of heptamethine cyanine enables efficient charge conversion of nanoparticles. Here heptamethine-cyanine-based nanoparticles achieve specific tumour imaging, deep tumour penetration and high therapeutic efficacy in rectal cancer animal models.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"19 11\",\"pages\":\"1723-1734\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01757-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01757-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photobleaching-mediated charge-convertible cyclodextrin nanoparticles achieve deep tumour penetration for rectal cancer theranostics
Although charge-converting nanoparticles (NPs) potentially penetrate tumours deeply, conventional charge conversion strategies possess limitations, including low selectivity and slow, inconsistent conversion rate within the tumour microenvironment. In this study, we synthesized a zwitterionic near-infrared cyclodextrin derivative of heptamethine cyanine and complexed it with pheophorbide-conjugated ferrocene to produce multifunctional theranostic nanotherapeutics. Our NPs demonstrated enhanced tumour-targeting ability, enabling the highly specific imaging of rectal tumours, with tumour-to-rectum signal ratios reaching up to 7.8. The zwitterionic surface charge of the NPs was rapidly converted to a cationic charge within the tumours on 880 nm near-infrared laser irradiation, promoting the tumoural penetration of NPs via transcytosis. After penetration, photodynamic/chemodynamic therapy was initiated using a 660 nm laser. Our NPs eradicated clinically relevant-sized heterotopic tumours (~250 mm3) and orthotopic rectal tumours, displaying their potential as theranostic nanoplatforms for targeting rectal cancer. The photobleaching property of heptamethine cyanine enables efficient charge conversion of nanoparticles. Here heptamethine-cyanine-based nanoparticles achieve specific tumour imaging, deep tumour penetration and high therapeutic efficacy in rectal cancer animal models.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.