Talya D. Hackett, Alix M. C. Sauve, Kate P. Maia, Daniel Montoya, Nancy Davies, Rose Archer, Simon G. Potts, Jason M. Tylianakis, Ian P. Vaughan, Jane Memmott
{"title":"多生境景观更加多样和稳定,功能得到改善","authors":"Talya D. Hackett, Alix M. C. Sauve, Kate P. Maia, Daniel Montoya, Nancy Davies, Rose Archer, Simon G. Potts, Jason M. Tylianakis, Ian P. Vaughan, Jane Memmott","doi":"10.1038/s41586-024-07825-y","DOIUrl":null,"url":null,"abstract":"Conservation, restoration and land management are increasingly implemented at landscape scales1,2. However, because species interaction data are typically habitat- and/or guild-specific, exactly how those interactions connect habitats and affect the stability and function of communities at landscape scales remains poorly understood. We combine multi-guild species interaction data (plant–pollinator and three plant–herbivore–parasitoid communities, collected from landscapes with one, two or three habitats), a field experiment and a modelling approach to show that multi-habitat landscapes support higher species and interaction evenness, more complementary species interactions and more consistent robustness to species loss. These emergent network properties drive improved pollination success in landscapes with more habitats and are not explained by simply summing component habitat webs. Linking landscape composition, through community structure, to ecosystem function, highlights mechanisms by which several contiguous habitats can support landscape-scale ecosystem services. Species interaction data, a field experiment and modelling of plant–insect communities show that landscapes with more habitat types support more even species, more complementary interactions, are more consistently robust to species loss, and confer greater pollination function.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-07825-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-habitat landscapes are more diverse and stable with improved function\",\"authors\":\"Talya D. Hackett, Alix M. C. Sauve, Kate P. Maia, Daniel Montoya, Nancy Davies, Rose Archer, Simon G. Potts, Jason M. Tylianakis, Ian P. Vaughan, Jane Memmott\",\"doi\":\"10.1038/s41586-024-07825-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conservation, restoration and land management are increasingly implemented at landscape scales1,2. However, because species interaction data are typically habitat- and/or guild-specific, exactly how those interactions connect habitats and affect the stability and function of communities at landscape scales remains poorly understood. We combine multi-guild species interaction data (plant–pollinator and three plant–herbivore–parasitoid communities, collected from landscapes with one, two or three habitats), a field experiment and a modelling approach to show that multi-habitat landscapes support higher species and interaction evenness, more complementary species interactions and more consistent robustness to species loss. These emergent network properties drive improved pollination success in landscapes with more habitats and are not explained by simply summing component habitat webs. Linking landscape composition, through community structure, to ecosystem function, highlights mechanisms by which several contiguous habitats can support landscape-scale ecosystem services. Species interaction data, a field experiment and modelling of plant–insect communities show that landscapes with more habitat types support more even species, more complementary interactions, are more consistently robust to species loss, and confer greater pollination function.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-024-07825-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-024-07825-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07825-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-habitat landscapes are more diverse and stable with improved function
Conservation, restoration and land management are increasingly implemented at landscape scales1,2. However, because species interaction data are typically habitat- and/or guild-specific, exactly how those interactions connect habitats and affect the stability and function of communities at landscape scales remains poorly understood. We combine multi-guild species interaction data (plant–pollinator and three plant–herbivore–parasitoid communities, collected from landscapes with one, two or three habitats), a field experiment and a modelling approach to show that multi-habitat landscapes support higher species and interaction evenness, more complementary species interactions and more consistent robustness to species loss. These emergent network properties drive improved pollination success in landscapes with more habitats and are not explained by simply summing component habitat webs. Linking landscape composition, through community structure, to ecosystem function, highlights mechanisms by which several contiguous habitats can support landscape-scale ecosystem services. Species interaction data, a field experiment and modelling of plant–insect communities show that landscapes with more habitat types support more even species, more complementary interactions, are more consistently robust to species loss, and confer greater pollination function.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).