人类胎盘中未标注微蛋白的蛋白质组剖析发现 XRCC6P1 是潜在的翻译负调控因子

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2024-09-06 Epub Date: 2024-08-22 DOI:10.1021/acs.jproteome.4c00319
Qiong Li, Fanrong Liu, Xiaoyu Ma, Feifei Chen, Ziying Yi, Yangyang Du, Anxin Huang, Chenyang Zhao, Da Wang, Yanran Chen, Xiongwen Cao
{"title":"人类胎盘中未标注微蛋白的蛋白质组剖析发现 XRCC6P1 是潜在的翻译负调控因子","authors":"Qiong Li, Fanrong Liu, Xiaoyu Ma, Feifei Chen, Ziying Yi, Yangyang Du, Anxin Huang, Chenyang Zhao, Da Wang, Yanran Chen, Xiongwen Cao","doi":"10.1021/acs.jproteome.4c00319","DOIUrl":null,"url":null,"abstract":"<p><p>Ribosome profiling and mass spectrometry have revealed thousands of previously unannotated small and alternative open reading frames (sm/alt-ORFs) that are translated into micro/alt-proteins in mammalian cells. However, their prevalence across human tissues and biological roles remains largely undefined. The placenta is an ideal model for identifying unannotated microproteins and alt-proteins due to its considerable protein diversity that is required to sustain fetal development during pregnancy. Here, we profiled unannotated microproteins and alt-proteins in human placental tissues from preeclampsia patients or healthy individuals by proteomics, identified 52 unannotated microproteins or alt-proteins, and demonstrated that five microproteins can be translated from overexpression constructs in a heterologous cell line, although several are unstable. We further demonstrated that one microprotein, XRCC6P1, associates with translation initiation factor eIF3 and negatively regulates translation when exogenously overexpressed. Thus, we revealed a hidden sm/alt-ORF-encoded proteome in the human placenta, which may advance the mechanism studies for placenta development as well as placental disorders such as preeclampsia.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic Profiling of Unannotated Microproteins in Human Placenta Reveals XRCC6P1 as a Potential Negative Regulator of Translation.\",\"authors\":\"Qiong Li, Fanrong Liu, Xiaoyu Ma, Feifei Chen, Ziying Yi, Yangyang Du, Anxin Huang, Chenyang Zhao, Da Wang, Yanran Chen, Xiongwen Cao\",\"doi\":\"10.1021/acs.jproteome.4c00319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ribosome profiling and mass spectrometry have revealed thousands of previously unannotated small and alternative open reading frames (sm/alt-ORFs) that are translated into micro/alt-proteins in mammalian cells. However, their prevalence across human tissues and biological roles remains largely undefined. The placenta is an ideal model for identifying unannotated microproteins and alt-proteins due to its considerable protein diversity that is required to sustain fetal development during pregnancy. Here, we profiled unannotated microproteins and alt-proteins in human placental tissues from preeclampsia patients or healthy individuals by proteomics, identified 52 unannotated microproteins or alt-proteins, and demonstrated that five microproteins can be translated from overexpression constructs in a heterologous cell line, although several are unstable. We further demonstrated that one microprotein, XRCC6P1, associates with translation initiation factor eIF3 and negatively regulates translation when exogenously overexpressed. Thus, we revealed a hidden sm/alt-ORF-encoded proteome in the human placenta, which may advance the mechanism studies for placenta development as well as placental disorders such as preeclampsia.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00319\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00319","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

核糖体图谱分析和质谱分析揭示了哺乳动物细胞中数千个以前未注明的小型和替代开放阅读框(sm/alt-ORFs),这些阅读框被翻译成微/高蛋白质。然而,它们在人体组织中的普遍性和生物学作用在很大程度上仍未确定。胎盘是鉴定未注释微蛋白和alt蛋白的理想模型,因为胎盘中的蛋白质具有相当大的多样性,是孕期维持胎儿发育所必需的。在这里,我们通过蛋白质组学分析了子痫前期患者或健康人胎盘组织中未注释的微蛋白和另类蛋白,鉴定了52种未注释的微蛋白或另类蛋白,并证明有5种微蛋白可以在异源细胞系中通过过表达构建物进行翻译,但其中有几种不稳定。我们进一步证明,一种微蛋白 XRCC6P1 与翻译起始因子 eIF3 相关联,外源过表达时会对翻译产生负调控作用。因此,我们揭示了人类胎盘中隐藏的sm/alt-ORF编码的蛋白质组,这可能会推动胎盘发育和胎盘疾病(如子痫前期)的机制研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteomic Profiling of Unannotated Microproteins in Human Placenta Reveals XRCC6P1 as a Potential Negative Regulator of Translation.

Ribosome profiling and mass spectrometry have revealed thousands of previously unannotated small and alternative open reading frames (sm/alt-ORFs) that are translated into micro/alt-proteins in mammalian cells. However, their prevalence across human tissues and biological roles remains largely undefined. The placenta is an ideal model for identifying unannotated microproteins and alt-proteins due to its considerable protein diversity that is required to sustain fetal development during pregnancy. Here, we profiled unannotated microproteins and alt-proteins in human placental tissues from preeclampsia patients or healthy individuals by proteomics, identified 52 unannotated microproteins or alt-proteins, and demonstrated that five microproteins can be translated from overexpression constructs in a heterologous cell line, although several are unstable. We further demonstrated that one microprotein, XRCC6P1, associates with translation initiation factor eIF3 and negatively regulates translation when exogenously overexpressed. Thus, we revealed a hidden sm/alt-ORF-encoded proteome in the human placenta, which may advance the mechanism studies for placenta development as well as placental disorders such as preeclampsia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
Exploring Infantile Epileptic Spasm Syndrome: A Proteomic Analysis of Plasma Using the Data-Independent Acquisition Approach. Chronic Exposure to Petroleum-Derived Hydrocarbons Alters Human Skin Microbiome and Metabolome Profiles: A Pilot Study. Unveiling Pathophysiological Insights: Serum Metabolic Dysregulation in Acute Respiratory Distress Syndrome Patients with Acute Kidney Injury. Valuable Contributions and Lessons Learned from Proteomics and Metabolomics Studies of COVID-19. Characteristics of Myocardial Structure and Central Carbon Metabolism during the Early and Compensatory Stages of Cardiac Hypertrophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1