硫代硫酸硫基转移酶的缺乏介导了糖尿病肾病肾小管线粒体脂肪酸氧化的功能障碍。

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Death and Differentiation Pub Date : 2024-08-22 DOI:10.1038/s41418-024-01365-8
Jia Xiu Zhang, Pei Pei Chen, Xue Qi Li, Liang Li, Qin Yi Wu, Gui Hua Wang, Xiong Zhong Ruan, Kun Ling Ma
{"title":"硫代硫酸硫基转移酶的缺乏介导了糖尿病肾病肾小管线粒体脂肪酸氧化的功能障碍。","authors":"Jia Xiu Zhang, Pei Pei Chen, Xue Qi Li, Liang Li, Qin Yi Wu, Gui Hua Wang, Xiong Zhong Ruan, Kun Ling Ma","doi":"10.1038/s41418-024-01365-8","DOIUrl":null,"url":null,"abstract":"<p><p>One of the main characteristics of diabetic kidney disease (DKD) is abnormal renal tubular fatty acid metabolism, especially defective fatty acid oxidation (FAO), accelerating tubular injury and tubulointerstitial fibrosis. Thiosulfate sulfurtransferase (TST), a mitochondrial enzyme essential for sulfur transfer, is reduced in metabolic diseases like diabetes and obesity. However, the potential role of TST in regulating fatty acid metabolic abnormalities in DKD remains unclear. Here, our data revealed decreased TST expression in the renal cortex of DKD patients. TST deficiency exacerbated tubular impairment in both diabetic and renal fibrosis mouse models, while sodium thiosulfate treatment or TST overexpression mitigated renal tubular injury with high-glucose exposure. TST downregulation mediated the decrease in S-sulfhydration of very long-chain specific acyl-CoA dehydrogenase, resulting in mitochondrial FAO dysfunction. This sequence of events exacerbates the progression of tubulointerstitial injury in DKD. Together, our findings demonstrate TST as a regulator of renal tubular injury in DKD.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease.\",\"authors\":\"Jia Xiu Zhang, Pei Pei Chen, Xue Qi Li, Liang Li, Qin Yi Wu, Gui Hua Wang, Xiong Zhong Ruan, Kun Ling Ma\",\"doi\":\"10.1038/s41418-024-01365-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the main characteristics of diabetic kidney disease (DKD) is abnormal renal tubular fatty acid metabolism, especially defective fatty acid oxidation (FAO), accelerating tubular injury and tubulointerstitial fibrosis. Thiosulfate sulfurtransferase (TST), a mitochondrial enzyme essential for sulfur transfer, is reduced in metabolic diseases like diabetes and obesity. However, the potential role of TST in regulating fatty acid metabolic abnormalities in DKD remains unclear. Here, our data revealed decreased TST expression in the renal cortex of DKD patients. TST deficiency exacerbated tubular impairment in both diabetic and renal fibrosis mouse models, while sodium thiosulfate treatment or TST overexpression mitigated renal tubular injury with high-glucose exposure. TST downregulation mediated the decrease in S-sulfhydration of very long-chain specific acyl-CoA dehydrogenase, resulting in mitochondrial FAO dysfunction. This sequence of events exacerbates the progression of tubulointerstitial injury in DKD. Together, our findings demonstrate TST as a regulator of renal tubular injury in DKD.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-024-01365-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01365-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病肾病(DKD)的主要特征之一是肾小管脂肪酸代谢异常,尤其是脂肪酸氧化(FAO)缺陷,从而加速肾小管损伤和肾小管间质纤维化。硫代硫酸硫基转移酶(TST)是一种线粒体酶,对硫的转移至关重要,但在糖尿病和肥胖症等代谢性疾病中,TST 的活性会降低。然而,TST 在调节 DKD 脂肪酸代谢异常中的潜在作用仍不清楚。在这里,我们的数据显示,DKD 患者肾皮质中的 TST 表达减少。在糖尿病和肾脏纤维化小鼠模型中,TST缺乏会加重肾小管损伤,而硫代硫酸钠治疗或TST过表达会减轻高葡萄糖暴露下的肾小管损伤。TST 的下调介导了极长链特异性酰基-CoA 脱氢酶 S-硫酸化的减少,导致线粒体 FAO 功能障碍。这一系列事件加剧了 DKD 肾小管间质损伤的进展。我们的研究结果证明,TST 是 DKD 肾小管损伤的调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease.

One of the main characteristics of diabetic kidney disease (DKD) is abnormal renal tubular fatty acid metabolism, especially defective fatty acid oxidation (FAO), accelerating tubular injury and tubulointerstitial fibrosis. Thiosulfate sulfurtransferase (TST), a mitochondrial enzyme essential for sulfur transfer, is reduced in metabolic diseases like diabetes and obesity. However, the potential role of TST in regulating fatty acid metabolic abnormalities in DKD remains unclear. Here, our data revealed decreased TST expression in the renal cortex of DKD patients. TST deficiency exacerbated tubular impairment in both diabetic and renal fibrosis mouse models, while sodium thiosulfate treatment or TST overexpression mitigated renal tubular injury with high-glucose exposure. TST downregulation mediated the decrease in S-sulfhydration of very long-chain specific acyl-CoA dehydrogenase, resulting in mitochondrial FAO dysfunction. This sequence of events exacerbates the progression of tubulointerstitial injury in DKD. Together, our findings demonstrate TST as a regulator of renal tubular injury in DKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
Angiopoietin-like protein 8 directs DNA damage responses towards apoptosis by stabilizing PARP1-DNA condensates Dural Tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons Retraction Note: Silencing of membrane-associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3. UGT8 mediated sulfatide synthesis modulates BAX localization and dictates apoptosis sensitivity of colorectal cancer A novel hypoxia-induced lncRNA, SZT2-AS1, boosts HCC progression by mediating HIF heterodimerization and histone trimethylation under a hypoxic microenvironment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1