{"title":"未来草地转为耕地或开发的景观尺度预测。","authors":"Kevin W Barnes, Neal D Niemuth, Rich Iovanna","doi":"10.1111/cobi.14346","DOIUrl":null,"url":null,"abstract":"<p><p>Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R<sup>2</sup> = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R<sup>2</sup> = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.</p>","PeriodicalId":10689,"journal":{"name":"Conservation Biology","volume":" ","pages":"e14346"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape-scale predictions of future grassland conversion to cropland or development.\",\"authors\":\"Kevin W Barnes, Neal D Niemuth, Rich Iovanna\",\"doi\":\"10.1111/cobi.14346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R<sup>2</sup> = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R<sup>2</sup> = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.</p>\",\"PeriodicalId\":10689,\"journal\":{\"name\":\"Conservation Biology\",\"volume\":\" \",\"pages\":\"e14346\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/cobi.14346\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.14346","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Landscape-scale predictions of future grassland conversion to cropland or development.
Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R2 = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R2 = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.
期刊介绍:
Conservation Biology welcomes submissions that address the science and practice of conserving Earth's biological diversity. We encourage submissions that emphasize issues germane to any of Earth''s ecosystems or geographic regions and that apply diverse approaches to analyses and problem solving. Nevertheless, manuscripts with relevance to conservation that transcend the particular ecosystem, species, or situation described will be prioritized for publication.