未来草地转为耕地或开发的景观尺度预测。

IF 5.2 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Conservation Biology Pub Date : 2024-08-21 DOI:10.1111/cobi.14346
Kevin W Barnes, Neal D Niemuth, Rich Iovanna
{"title":"未来草地转为耕地或开发的景观尺度预测。","authors":"Kevin W Barnes, Neal D Niemuth, Rich Iovanna","doi":"10.1111/cobi.14346","DOIUrl":null,"url":null,"abstract":"<p><p>Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R<sup>2</sup> = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R<sup>2</sup> = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.</p>","PeriodicalId":10689,"journal":{"name":"Conservation Biology","volume":" ","pages":"e14346"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape-scale predictions of future grassland conversion to cropland or development.\",\"authors\":\"Kevin W Barnes, Neal D Niemuth, Rich Iovanna\",\"doi\":\"10.1111/cobi.14346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R<sup>2</sup> = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R<sup>2</sup> = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.</p>\",\"PeriodicalId\":10689,\"journal\":{\"name\":\"Conservation Biology\",\"volume\":\" \",\"pages\":\"e14346\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/cobi.14346\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.14346","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

草地保护规划通常侧重于高风险景观,但许多草地转化模型并不是为优化保护规划而设计的,因为它们缺乏多维风险评估,与生态和保护交付尺度不一致。为了帮助草地保护规划,我们开发了相关尺度的景观尺度模型,预测未来(2021-2031 年)未受保护的草地因耕地或开发而损失的总量和比例。我们为美国毗连地区的 20 个生态区域开发了模型,将过去的转化(2011-2021 年)与随机森林回归模型中的一系列协变量联系起来,并将模型应用于当代协变量以预测未来的损失。总体而言,草地损失模型表现良好,其解释力在不同生态区之间存在空间差异(总损失模型:加权组平均 R2 = 0.89 [范围:0.83-0.96],均方根误差 [RMSE] = 9.29 公顷 [范围:2.83-22.77 公顷];比例损失模型:加权组平均 R2 = 0.74 [范围:0.64-0.87],均方根误差 = 0.03 [范围:0.02-0.06])。在这两个模型中,地貌中的作物数量以及与城市、乙醇厂和集中饲养场的距离都具有很高的变量重要性。当草地、农作物或土地开发程度处于中等水平(∼50%)时,草地总损失量较大。当草地较少时(∼50%),草地损失比例较大。一些变量仅对部分生态区域有较大影响,例如,当 70% 的地貌被纳入保护储备计划时,草地损失更大。我们的方法提供了一种简单而灵活的方法,可用于开发适合全球保护的风险层。我们的转换模型可以支持保护规划,根据风险的函数确定优先次序,并通过纳入生物价值和成本进一步优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Landscape-scale predictions of future grassland conversion to cropland or development.

Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R2 = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R2 = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Conservation Biology
Conservation Biology 环境科学-环境科学
CiteScore
12.70
自引率
3.20%
发文量
175
审稿时长
2 months
期刊介绍: Conservation Biology welcomes submissions that address the science and practice of conserving Earth's biological diversity. We encourage submissions that emphasize issues germane to any of Earth''s ecosystems or geographic regions and that apply diverse approaches to analyses and problem solving. Nevertheless, manuscripts with relevance to conservation that transcend the particular ecosystem, species, or situation described will be prioritized for publication.
期刊最新文献
Effects of deforestation on multitaxa community similarity in the Brazilian Atlantic Forest. Advancing at-risk species recovery planning in an era of rapid ecological change with a transparent, flexible, and expert-engaged approach. Assessing disturbances in surviving primary forests of Europe. Lessons from a Rubik's Cube to solve the biodiversity crisis. Effectiveness of protected areas in the Caucasus Mountains in preventing rangeland degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1