{"title":"冠军的发条:昼夜节律生物学对运动表现的影响。","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.020","DOIUrl":null,"url":null,"abstract":"<div><p>Exercise physiology and circadian biology are distinct and long-standing fields. Recently they have seen increased integration, largely due to the discovery of the molecular components of the circadian clock and recognition of human exercise performance differences over time-of-day. Circadian clocks, ubiquitous in cells, regulate a daily tissue specific program of gene expression that contribute to temporal patterns of physiological functions over a 24-h cycle. Understanding how circadian clock function in skeletal muscle, as well as other tissues contribute to exercise performance is still in the very early stages. This review provides background on this emerging field with a review of early exercise and time-of-day studies in both human and animals. We then move into the role of the circadian clock and its daily program of gene expression in skeletal muscle with a focus on specific metabolic and physiological outputs that vary over time-of-day. Lastly, we discuss the recognition that the timing of exercise communicates with the skeletal muscle circadian clock to adjust its phase settings and why this maybe important for performance and health.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0891584924006075/pdfft?md5=db5ad6cd23508d904bf105f57645cdb5&pid=1-s2.0-S0891584924006075-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The clockwork of champions: Influence of circadian biology on exercise performance\",\"authors\":\"\",\"doi\":\"10.1016/j.freeradbiomed.2024.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exercise physiology and circadian biology are distinct and long-standing fields. Recently they have seen increased integration, largely due to the discovery of the molecular components of the circadian clock and recognition of human exercise performance differences over time-of-day. Circadian clocks, ubiquitous in cells, regulate a daily tissue specific program of gene expression that contribute to temporal patterns of physiological functions over a 24-h cycle. Understanding how circadian clock function in skeletal muscle, as well as other tissues contribute to exercise performance is still in the very early stages. This review provides background on this emerging field with a review of early exercise and time-of-day studies in both human and animals. We then move into the role of the circadian clock and its daily program of gene expression in skeletal muscle with a focus on specific metabolic and physiological outputs that vary over time-of-day. Lastly, we discuss the recognition that the timing of exercise communicates with the skeletal muscle circadian clock to adjust its phase settings and why this maybe important for performance and health.</p></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0891584924006075/pdfft?md5=db5ad6cd23508d904bf105f57645cdb5&pid=1-s2.0-S0891584924006075-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584924006075\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924006075","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The clockwork of champions: Influence of circadian biology on exercise performance
Exercise physiology and circadian biology are distinct and long-standing fields. Recently they have seen increased integration, largely due to the discovery of the molecular components of the circadian clock and recognition of human exercise performance differences over time-of-day. Circadian clocks, ubiquitous in cells, regulate a daily tissue specific program of gene expression that contribute to temporal patterns of physiological functions over a 24-h cycle. Understanding how circadian clock function in skeletal muscle, as well as other tissues contribute to exercise performance is still in the very early stages. This review provides background on this emerging field with a review of early exercise and time-of-day studies in both human and animals. We then move into the role of the circadian clock and its daily program of gene expression in skeletal muscle with a focus on specific metabolic and physiological outputs that vary over time-of-day. Lastly, we discuss the recognition that the timing of exercise communicates with the skeletal muscle circadian clock to adjust its phase settings and why this maybe important for performance and health.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.