Faiqa Maqsood, Wang Zhenfei, Muhammad Mumtaz Ali, Baozhi Qiu, Naveed Ur Rehman, Fahad Sabah, Tahir Mahmood, Irfanud Din, Raheem Sarwar
{"title":"使用混合 SpinalZFNet 对 CT 图像进行基于人工智能的分类。","authors":"Faiqa Maqsood, Wang Zhenfei, Muhammad Mumtaz Ali, Baozhi Qiu, Naveed Ur Rehman, Fahad Sabah, Tahir Mahmood, Irfanud Din, Raheem Sarwar","doi":"10.1007/s12539-024-00649-4","DOIUrl":null,"url":null,"abstract":"<p><p>The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"907-925"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512893/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Based Classification of CT Images Using a Hybrid SpinalZFNet.\",\"authors\":\"Faiqa Maqsood, Wang Zhenfei, Muhammad Mumtaz Ali, Baozhi Qiu, Naveed Ur Rehman, Fahad Sabah, Tahir Mahmood, Irfanud Din, Raheem Sarwar\",\"doi\":\"10.1007/s12539-024-00649-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"907-925\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00649-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00649-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Artificial Intelligence-Based Classification of CT Images Using a Hybrid SpinalZFNet.
The kidney is an abdominal organ in the human body that supports filtering excess water and waste from the blood. Kidney diseases generally occur due to changes in certain supplements, medical conditions, obesity, and diet, which causes kidney function and ultimately leads to complications such as chronic kidney disease, kidney failure, and other renal disorders. Combining patient metadata with computed tomography (CT) images is essential to accurately and timely diagnosing such complications. Deep Neural Networks (DNNs) have transformed medical fields by providing high accuracy in complex tasks. However, the high computational cost of these models is a significant challenge, particularly in real-time applications. This paper proposed SpinalZFNet, a hybrid deep learning approach that integrates the architectural strengths of Spinal Network (SpinalNet) with the feature extraction capabilities of Zeiler and Fergus Network (ZFNet) to classify kidney disease accurately using CT images. This unique combination enhanced feature analysis, significantly improving classification accuracy while reducing the computational overhead. At first, the acquired CT images are pre-processed using a median filter, and the pre-processed image is segmented using Efficient Neural Network (ENet). Later, the images are augmented, and different features are extracted from the augmented CT images. The extracted features finally classify the kidney disease into normal, tumor, cyst, and stone using the proposed SpinalZFNet model. The SpinalZFNet outperformed other models, with 99.9% sensitivity, 99.5% specificity, precision 99.6%, 99.8% accuracy, and 99.7% F1-Score in classifying kidney disease.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.