{"title":"比较转录组学发现了长尾蝌蚪虾(Triops longicaudatus,科蝌蚪目:Notostraca)躯干膨大的潜在实现基因。","authors":"Seunghun Jung, Seojun Kim, Seunggwan Shin","doi":"10.1002/jez.b.23272","DOIUrl":null,"url":null,"abstract":"<p><p>The origin of morphological innovation has been extensively studied within evolutionary developmental biology (evo-devo). Recent studies have demonstrated that the developmental module for double-layered epithelial outgrowths is conserved between the insect wings and branchiopod crustacean carapace, thereby introducing homology among these diverse structures. However, evo-devo studies on the branchiopod crustacean carapace have been primarily limited to a single species, the water flea Daphnia magna, leaving the gene regulatory network governing carapace development not comprehensively understood. Furthermore, realizator genes downstream of the character identity mechanism (ChIM) for bilayered epithelial development remain inadequately described. In this study, we analyzed tissue-specific transcriptional profiles in the developing longtail tadpole shrimp, Triops longicaudatus. We observed significant upregulation of papilin in the carapace-bearing head, along with its expression in both the carapace and the trunk limb lobes. Based on these results, we hypothesize that differential expression of papilin is involved in the disproportional growth of Triops carapace. Our findings will contribute to elucidating the diversification of double-layered epithelial outgrowths across distant arthropod lineages.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative transcriptomics suggests a potential realizator gene for carapace expansion in longtail tadpole shrimp, Triops longicaudatus (Branchiopoda: Notostraca).\",\"authors\":\"Seunghun Jung, Seojun Kim, Seunggwan Shin\",\"doi\":\"10.1002/jez.b.23272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The origin of morphological innovation has been extensively studied within evolutionary developmental biology (evo-devo). Recent studies have demonstrated that the developmental module for double-layered epithelial outgrowths is conserved between the insect wings and branchiopod crustacean carapace, thereby introducing homology among these diverse structures. However, evo-devo studies on the branchiopod crustacean carapace have been primarily limited to a single species, the water flea Daphnia magna, leaving the gene regulatory network governing carapace development not comprehensively understood. Furthermore, realizator genes downstream of the character identity mechanism (ChIM) for bilayered epithelial development remain inadequately described. In this study, we analyzed tissue-specific transcriptional profiles in the developing longtail tadpole shrimp, Triops longicaudatus. We observed significant upregulation of papilin in the carapace-bearing head, along with its expression in both the carapace and the trunk limb lobes. Based on these results, we hypothesize that differential expression of papilin is involved in the disproportional growth of Triops carapace. Our findings will contribute to elucidating the diversification of double-layered epithelial outgrowths across distant arthropod lineages.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jez.b.23272\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jez.b.23272","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Comparative transcriptomics suggests a potential realizator gene for carapace expansion in longtail tadpole shrimp, Triops longicaudatus (Branchiopoda: Notostraca).
The origin of morphological innovation has been extensively studied within evolutionary developmental biology (evo-devo). Recent studies have demonstrated that the developmental module for double-layered epithelial outgrowths is conserved between the insect wings and branchiopod crustacean carapace, thereby introducing homology among these diverse structures. However, evo-devo studies on the branchiopod crustacean carapace have been primarily limited to a single species, the water flea Daphnia magna, leaving the gene regulatory network governing carapace development not comprehensively understood. Furthermore, realizator genes downstream of the character identity mechanism (ChIM) for bilayered epithelial development remain inadequately described. In this study, we analyzed tissue-specific transcriptional profiles in the developing longtail tadpole shrimp, Triops longicaudatus. We observed significant upregulation of papilin in the carapace-bearing head, along with its expression in both the carapace and the trunk limb lobes. Based on these results, we hypothesize that differential expression of papilin is involved in the disproportional growth of Triops carapace. Our findings will contribute to elucidating the diversification of double-layered epithelial outgrowths across distant arthropod lineages.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.