降低氢化物高温超导稳定压力的视角。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-09-11 DOI:10.1088/1361-648X/ad7217
Qiwen Jiang, Ling Chen, Mingyang Du, Defang Duan
{"title":"降低氢化物高温超导稳定压力的视角。","authors":"Qiwen Jiang, Ling Chen, Mingyang Du, Defang Duan","doi":"10.1088/1361-648X/ad7217","DOIUrl":null,"url":null,"abstract":"<p><p>The theoretical predictions and experimental syntheses of hydrogen sulfide (H<sub>3</sub>S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides.\",\"authors\":\"Qiwen Jiang, Ling Chen, Mingyang Du, Defang Duan\",\"doi\":\"10.1088/1361-648X/ad7217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The theoretical predictions and experimental syntheses of hydrogen sulfide (H<sub>3</sub>S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad7217\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7217","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

硫化氢(H3S)的理论预测和实验合成激发了人们对氢化物超导体的研究兴趣。在过去的二十年里,人们对氢化物进行了广泛的研究,最终目标是在环境条件下实现室温超导。在本综述中,我们全面总结了氢化物材料实现这一目标的当前策略和进展。我们总结了它们的电子特性、氢原子聚集形式、稳定机制等。在提供研究现状实时快照的同时,我们的目标是为降低氢化物高温超导体的稳定压力提供更深入的见解。这包括确定关键的长期理论和实验机遇与挑战。尽管实现氢基超导体的高临界温度仍然需要高压,但我们仍然对氢化物作为常压室温超导体候选材料的潜力充满信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides.

The theoretical predictions and experimental syntheses of hydrogen sulfide (H3S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids. Chirality reversal quantum phase transition in flat-band topological insulators. Critical factors influencing electron and phonon thermal conductivity in metallic materials using first-principles calculations. Valley manipulation by external fields in two-dimensional materials and their hybrid systems. Phase transition and metallization of semiconductor GeSe at high pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1