Wei Xiong, Bo Zheng, Di Liu, Mo Pu, Shijie Zhou, Ying Deng
{"title":"槲皮素通过减少细胞外囊泡介导的 VEGFR2 mRNA 转移,抑制内皮细胞和肝细胞癌细胞的串联。","authors":"Wei Xiong, Bo Zheng, Di Liu, Mo Pu, Shijie Zhou, Ying Deng","doi":"10.1002/mc.23807","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the regulatory effects of quercetin extracellular vesicles (EVs)-mediated expression of vascular endothelial growth factor receptor 2 (VEGFR2) in hepatocellular carcinoma (HCC)-derived circulating tumor cells (CTCs) and the underlying mechanisms. CTCs were isolated from patients with pathologically diagnosed HCC, with VEGFR2 expression visualized by fluorescence in situ hybridization (FISH). The human HCC cell line Huh-7 and SK-HEP-1 were used for in vitro studies to assess EVs uptake, VEGFR2 mRNA transfer, invasion, migration, cancer stem cell (CSC) properties, and VEGF secretion. Results showed that VEGFR2 mRNA was commonly expressed in HCC-CTCs, with a higher incidence in biphenotypic CTCs. Its expression was limited in HCC cell lines, but present in certain liver cells. In vitro experiments confirmed that VEGFR2 mRNA could be transferred to HCC cells via EVs from primary tumor endothelial cells (PTECs), which was impaired by quercetin treatment. Quercetin significantly reduced VEGFR2 mRNA and protein expression in HCC cells, weakened their invasive and metastatic capacities, and diminished VEGFR2-mediated CSC properties. In vivo, quercetin reduced VEGF secretion, impaired angiogenesis, slowed tumor growth, and decreased the number and proportion of VEGFR2-positive CTCs. In summary, VEGFR2 mRNA is present in HCC-CTCs, potentially sourced from PTECs-derived EVs. Quercetin effectively inhibits VEGFR2 expression, impacting HCC cell invasion, metastasis, and CSC characteristics. Besides, it reduces VEGFR2-positive CTCs in vivo. These effects support its therapeutic potential in HCC treatment by targeting the angiogenesis and tumor dissemination pathway.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2254-2268"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quercetin inhibits endothelial & hepatocellular carcinoma cell crosstalk via reducing extracellular vesicle-mediated VEGFR2 mRNA transfer.\",\"authors\":\"Wei Xiong, Bo Zheng, Di Liu, Mo Pu, Shijie Zhou, Ying Deng\",\"doi\":\"10.1002/mc.23807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to investigate the regulatory effects of quercetin extracellular vesicles (EVs)-mediated expression of vascular endothelial growth factor receptor 2 (VEGFR2) in hepatocellular carcinoma (HCC)-derived circulating tumor cells (CTCs) and the underlying mechanisms. CTCs were isolated from patients with pathologically diagnosed HCC, with VEGFR2 expression visualized by fluorescence in situ hybridization (FISH). The human HCC cell line Huh-7 and SK-HEP-1 were used for in vitro studies to assess EVs uptake, VEGFR2 mRNA transfer, invasion, migration, cancer stem cell (CSC) properties, and VEGF secretion. Results showed that VEGFR2 mRNA was commonly expressed in HCC-CTCs, with a higher incidence in biphenotypic CTCs. Its expression was limited in HCC cell lines, but present in certain liver cells. In vitro experiments confirmed that VEGFR2 mRNA could be transferred to HCC cells via EVs from primary tumor endothelial cells (PTECs), which was impaired by quercetin treatment. Quercetin significantly reduced VEGFR2 mRNA and protein expression in HCC cells, weakened their invasive and metastatic capacities, and diminished VEGFR2-mediated CSC properties. In vivo, quercetin reduced VEGF secretion, impaired angiogenesis, slowed tumor growth, and decreased the number and proportion of VEGFR2-positive CTCs. In summary, VEGFR2 mRNA is present in HCC-CTCs, potentially sourced from PTECs-derived EVs. Quercetin effectively inhibits VEGFR2 expression, impacting HCC cell invasion, metastasis, and CSC characteristics. Besides, it reduces VEGFR2-positive CTCs in vivo. These effects support its therapeutic potential in HCC treatment by targeting the angiogenesis and tumor dissemination pathway.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"2254-2268\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23807\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23807","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
This study aims to investigate the regulatory effects of quercetin extracellular vesicles (EVs)-mediated expression of vascular endothelial growth factor receptor 2 (VEGFR2) in hepatocellular carcinoma (HCC)-derived circulating tumor cells (CTCs) and the underlying mechanisms. CTCs were isolated from patients with pathologically diagnosed HCC, with VEGFR2 expression visualized by fluorescence in situ hybridization (FISH). The human HCC cell line Huh-7 and SK-HEP-1 were used for in vitro studies to assess EVs uptake, VEGFR2 mRNA transfer, invasion, migration, cancer stem cell (CSC) properties, and VEGF secretion. Results showed that VEGFR2 mRNA was commonly expressed in HCC-CTCs, with a higher incidence in biphenotypic CTCs. Its expression was limited in HCC cell lines, but present in certain liver cells. In vitro experiments confirmed that VEGFR2 mRNA could be transferred to HCC cells via EVs from primary tumor endothelial cells (PTECs), which was impaired by quercetin treatment. Quercetin significantly reduced VEGFR2 mRNA and protein expression in HCC cells, weakened their invasive and metastatic capacities, and diminished VEGFR2-mediated CSC properties. In vivo, quercetin reduced VEGF secretion, impaired angiogenesis, slowed tumor growth, and decreased the number and proportion of VEGFR2-positive CTCs. In summary, VEGFR2 mRNA is present in HCC-CTCs, potentially sourced from PTECs-derived EVs. Quercetin effectively inhibits VEGFR2 expression, impacting HCC cell invasion, metastasis, and CSC characteristics. Besides, it reduces VEGFR2-positive CTCs in vivo. These effects support its therapeutic potential in HCC treatment by targeting the angiogenesis and tumor dissemination pathway.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.