{"title":"[用于清除治疗类风湿性关节炎的活性氧的 ZIF-8@Pt 纳米酶]。","authors":"Xuelan Lei, Li Qiu, Fangxue DU","doi":"10.12182/20240760201","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To formulate a ZIF-8 nano mimetic enzyme conjugated with platinum metal (ZIF-8@Pt) that can scavenge reactive oxygen species (ROS) and to explore its potential applications in the treatment of rheumatoid arthritis (RA).</p><p><strong>Methods: </strong>The ZIF-8@Pt nanozyme was created by <i>in situ</i> reduction. Characterization of the nanozyme was then performed and its ability to mimic enzymes was investigated. Cell experiments were conducted using RAW264.7 cells, which were divided into three groups, including the untreated group (UT), the positive control group receiving lipopolysaccharide (LPS), which was designated as the LPS group, and the ZIF-8@Pt group receiving ZIF-8@Pt and LPS treatment. The cell experiments were conducted to evaluate the anti-inflammatory properties of ZIF-8@Pt through scavenging intracellular ROS. On the other hand, a collagen-induced arthritis (CIA) model was induced in rats. Similar to the group designations in the cell experiments, the rats were assigned to three groups, including a healthy control group (the UT group), a positive control group receiving a local injection of PBS solution in the knee joint, which was referred to as the control group, and a treatment group receiving a local injection of ZIF-8@Pt solution in the knee joint, which was referred to as the ZIF-8@Pt group. General evaluation, imaging observation, assessment of inflammatory factors, and pathological evaluation were performed to assess the therapeutic efficacy of ZIF-8@Pt against RA.</p><p><strong>Results: </strong>The <i>in vitro</i> experiment revealed significant difference in the levels of intracellular ROS and LPS-induced M1-type macrophage polarization between the LPS group and the ZIF-8@Pt group (<i>P</i><0.05). The <i>in vivo</i> experiment showed that significant difference in the levels of inflammatory factors, including interleukin-1β (IL-1β), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and arginase-1 (Arg-1) in the knee joints of the CIA rats between the LPS group and the ZIF-8@Pt group (<i>P</i><0.05). Comparing the findings for the ZIF-8@Pt group and the control group, pathology assessment revealed that ZIF-8@Pt reduced local hypoxia and suppressed osteoclastic activity, neovascularization, and M1-type macrophage polarization (<i>P</i><0.05).</p><p><strong>Conclusion: </strong>The ZIF-8@Pt enzyme mimetic inhibits macrophage inflammatory polarization by ROS scavenging, thereby improving inflammation in RA. Furthermore, the ZIF-8@Pt nanozyme improves the hypoxic environment and inhibits angiogenesis and bone destruction, demonstrating promising therapeutic efficacy for RA.</p>","PeriodicalId":39321,"journal":{"name":"四川大学学报(医学版)","volume":"55 4","pages":"826-837"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334274/pdf/","citationCount":"0","resultStr":"{\"title\":\"[ZIF-8@Pt Nanozyme Used for Scavenging Reactive Oxygen Species in the Treatment of Rheumatoid Arthritis].\",\"authors\":\"Xuelan Lei, Li Qiu, Fangxue DU\",\"doi\":\"10.12182/20240760201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To formulate a ZIF-8 nano mimetic enzyme conjugated with platinum metal (ZIF-8@Pt) that can scavenge reactive oxygen species (ROS) and to explore its potential applications in the treatment of rheumatoid arthritis (RA).</p><p><strong>Methods: </strong>The ZIF-8@Pt nanozyme was created by <i>in situ</i> reduction. Characterization of the nanozyme was then performed and its ability to mimic enzymes was investigated. Cell experiments were conducted using RAW264.7 cells, which were divided into three groups, including the untreated group (UT), the positive control group receiving lipopolysaccharide (LPS), which was designated as the LPS group, and the ZIF-8@Pt group receiving ZIF-8@Pt and LPS treatment. The cell experiments were conducted to evaluate the anti-inflammatory properties of ZIF-8@Pt through scavenging intracellular ROS. On the other hand, a collagen-induced arthritis (CIA) model was induced in rats. Similar to the group designations in the cell experiments, the rats were assigned to three groups, including a healthy control group (the UT group), a positive control group receiving a local injection of PBS solution in the knee joint, which was referred to as the control group, and a treatment group receiving a local injection of ZIF-8@Pt solution in the knee joint, which was referred to as the ZIF-8@Pt group. General evaluation, imaging observation, assessment of inflammatory factors, and pathological evaluation were performed to assess the therapeutic efficacy of ZIF-8@Pt against RA.</p><p><strong>Results: </strong>The <i>in vitro</i> experiment revealed significant difference in the levels of intracellular ROS and LPS-induced M1-type macrophage polarization between the LPS group and the ZIF-8@Pt group (<i>P</i><0.05). The <i>in vivo</i> experiment showed that significant difference in the levels of inflammatory factors, including interleukin-1β (IL-1β), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and arginase-1 (Arg-1) in the knee joints of the CIA rats between the LPS group and the ZIF-8@Pt group (<i>P</i><0.05). Comparing the findings for the ZIF-8@Pt group and the control group, pathology assessment revealed that ZIF-8@Pt reduced local hypoxia and suppressed osteoclastic activity, neovascularization, and M1-type macrophage polarization (<i>P</i><0.05).</p><p><strong>Conclusion: </strong>The ZIF-8@Pt enzyme mimetic inhibits macrophage inflammatory polarization by ROS scavenging, thereby improving inflammation in RA. Furthermore, the ZIF-8@Pt nanozyme improves the hypoxic environment and inhibits angiogenesis and bone destruction, demonstrating promising therapeutic efficacy for RA.</p>\",\"PeriodicalId\":39321,\"journal\":{\"name\":\"四川大学学报(医学版)\",\"volume\":\"55 4\",\"pages\":\"826-837\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"四川大学学报(医学版)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12182/20240760201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"四川大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12182/20240760201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[ZIF-8@Pt Nanozyme Used for Scavenging Reactive Oxygen Species in the Treatment of Rheumatoid Arthritis].
Objective: To formulate a ZIF-8 nano mimetic enzyme conjugated with platinum metal (ZIF-8@Pt) that can scavenge reactive oxygen species (ROS) and to explore its potential applications in the treatment of rheumatoid arthritis (RA).
Methods: The ZIF-8@Pt nanozyme was created by in situ reduction. Characterization of the nanozyme was then performed and its ability to mimic enzymes was investigated. Cell experiments were conducted using RAW264.7 cells, which were divided into three groups, including the untreated group (UT), the positive control group receiving lipopolysaccharide (LPS), which was designated as the LPS group, and the ZIF-8@Pt group receiving ZIF-8@Pt and LPS treatment. The cell experiments were conducted to evaluate the anti-inflammatory properties of ZIF-8@Pt through scavenging intracellular ROS. On the other hand, a collagen-induced arthritis (CIA) model was induced in rats. Similar to the group designations in the cell experiments, the rats were assigned to three groups, including a healthy control group (the UT group), a positive control group receiving a local injection of PBS solution in the knee joint, which was referred to as the control group, and a treatment group receiving a local injection of ZIF-8@Pt solution in the knee joint, which was referred to as the ZIF-8@Pt group. General evaluation, imaging observation, assessment of inflammatory factors, and pathological evaluation were performed to assess the therapeutic efficacy of ZIF-8@Pt against RA.
Results: The in vitro experiment revealed significant difference in the levels of intracellular ROS and LPS-induced M1-type macrophage polarization between the LPS group and the ZIF-8@Pt group (P<0.05). The in vivo experiment showed that significant difference in the levels of inflammatory factors, including interleukin-1β (IL-1β), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and arginase-1 (Arg-1) in the knee joints of the CIA rats between the LPS group and the ZIF-8@Pt group (P<0.05). Comparing the findings for the ZIF-8@Pt group and the control group, pathology assessment revealed that ZIF-8@Pt reduced local hypoxia and suppressed osteoclastic activity, neovascularization, and M1-type macrophage polarization (P<0.05).
Conclusion: The ZIF-8@Pt enzyme mimetic inhibits macrophage inflammatory polarization by ROS scavenging, thereby improving inflammation in RA. Furthermore, the ZIF-8@Pt nanozyme improves the hypoxic environment and inhibits angiogenesis and bone destruction, demonstrating promising therapeutic efficacy for RA.
四川大学学报(医学版)Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
0.70
自引率
0.00%
发文量
8695
期刊介绍:
"Journal of Sichuan University (Medical Edition)" is a comprehensive medical academic journal sponsored by Sichuan University, a higher education institution directly under the Ministry of Education of the People's Republic of China. It was founded in 1959 and was originally named "Journal of Sichuan Medical College". In 1986, it was renamed "Journal of West China University of Medical Sciences". In 2003, it was renamed "Journal of Sichuan University (Medical Edition)" (bimonthly).
"Journal of Sichuan University (Medical Edition)" is a Chinese core journal and a Chinese authoritative academic journal (RCCSE). It is included in the retrieval systems such as China Science and Technology Papers and Citation Database (CSTPCD), China Science Citation Database (CSCD) (core version), Peking University Library's "Overview of Chinese Core Journals", the U.S. "Index Medica" (IM/Medline), the U.S. "PubMed Central" (PMC), the U.S. "Biological Abstracts" (BA), the U.S. "Chemical Abstracts" (CA), the U.S. EBSCO, the Netherlands "Abstracts and Citation Database" (Scopus), the Japan Science and Technology Agency Database (JST), the Russian "Abstract Magazine", the Chinese Biomedical Literature CD-ROM Database (CBMdisc), the Chinese Biomedical Periodical Literature Database (CMCC), the China Academic Journal Network Full-text Database (CNKI), the Chinese Academic Journal (CD-ROM Edition), and the Wanfang Data-Digital Journal Group.