用于增强铅蒸气捕获的水热法合成高岭土类片状/海绵状铝硅酸盐。

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-13 DOI:10.1016/j.jhazmat.2024.135509
Tengfei He, Zifeng Luo, Baosheng Jin
{"title":"用于增强铅蒸气捕获的水热法合成高岭土类片状/海绵状铝硅酸盐。","authors":"Tengfei He, Zifeng Luo, Baosheng Jin","doi":"10.1016/j.jhazmat.2024.135509","DOIUrl":null,"url":null,"abstract":"<p><p>Developing high-temperature-resistant adsorbents with superior porous properties is crucial for safely disposing of heavy metal-containing solid waste via pyrolysis. We synthesized aluminosilicates hydrothermally and observed that acidic conditions, especially HCl (pH=2.6), favored sponge-like mineral (NC2.6) formation with a specific surface area of 500.31 m²/g and pore volume of 0.986 cm³ /g, while alkaline conditions (pH=12.0) promoted spherical particle growth. NC2.6 exhibited higher adsorption capacity compared to kaolinite and halloysite in the PbCl<sub>2</sub> vapor adsorption, reaching a maximum of 137.68 mg/g at 700 ℃ (75.91 % stable). We examined the effect of CO<sub>2</sub> and H<sub>2</sub>O on adsorption efficiency and explored the mechanisms using DFT and GCMC simulations. From GCMC results, CO<sub>2</sub> negatively impacted PbCl<sub>2</sub> adsorption due to competitive adsorption, while H<sub>2</sub>O increased adsorption content (144.24 mg/g at 700 ℃) by converting PbCl<sub>2</sub> into oxides. DFT revealed the presence of CO<sub>2</sub> enhanced the adsorption stability of PbCl<sub>2</sub> via the formation of covalent bonds between O in CO<sub>2</sub> and Pb, and active O on the aluminosilicate surface. H<sub>2</sub>O increased PbCl<sub>2</sub> adsorption energy, as O in H<sub>2</sub>O occupied an active Al that originally formed a covalent bond with Cl, while the H formed a weak hydrogen bond with this Cl.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal synthesized kaolin group lamellar/spongy aluminosilicates for enhanced lead vapor capture.\",\"authors\":\"Tengfei He, Zifeng Luo, Baosheng Jin\",\"doi\":\"10.1016/j.jhazmat.2024.135509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing high-temperature-resistant adsorbents with superior porous properties is crucial for safely disposing of heavy metal-containing solid waste via pyrolysis. We synthesized aluminosilicates hydrothermally and observed that acidic conditions, especially HCl (pH=2.6), favored sponge-like mineral (NC2.6) formation with a specific surface area of 500.31 m²/g and pore volume of 0.986 cm³ /g, while alkaline conditions (pH=12.0) promoted spherical particle growth. NC2.6 exhibited higher adsorption capacity compared to kaolinite and halloysite in the PbCl<sub>2</sub> vapor adsorption, reaching a maximum of 137.68 mg/g at 700 ℃ (75.91 % stable). We examined the effect of CO<sub>2</sub> and H<sub>2</sub>O on adsorption efficiency and explored the mechanisms using DFT and GCMC simulations. From GCMC results, CO<sub>2</sub> negatively impacted PbCl<sub>2</sub> adsorption due to competitive adsorption, while H<sub>2</sub>O increased adsorption content (144.24 mg/g at 700 ℃) by converting PbCl<sub>2</sub> into oxides. DFT revealed the presence of CO<sub>2</sub> enhanced the adsorption stability of PbCl<sub>2</sub> via the formation of covalent bonds between O in CO<sub>2</sub> and Pb, and active O on the aluminosilicate surface. H<sub>2</sub>O increased PbCl<sub>2</sub> adsorption energy, as O in H<sub>2</sub>O occupied an active Al that originally formed a covalent bond with Cl, while the H formed a weak hydrogen bond with this Cl.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发具有优异多孔特性的耐高温吸附剂对于通过热解安全处理含重金属固体废物至关重要。我们通过水热法合成了铝硅酸盐,并观察到酸性条件(尤其是盐酸(pH=2.6))有利于海绵状矿物(NC2.6)的形成,其比表面积为 500.31 m²/g,孔隙体积为 0.986 cm³ /g,而碱性条件(pH=12.0)则促进了球形颗粒的生长。与高岭石和哈洛石相比,NC2.6 在 PbCl2 蒸汽吸附中表现出更高的吸附容量,在 700 ℃ 时达到最大值 137.68 mg/g(75.91 % 稳定)。我们利用 DFT 和 GCMC 模拟研究了 CO2 和 H2O 对吸附效率的影响,并探讨了其中的机理。从 GCMC 结果来看,由于竞争性吸附,CO2 对 PbCl2 的吸附产生了负面影响,而 H2O 则通过将 PbCl2 转化为氧化物增加了吸附含量(700 ℃ 时为 144.24 mg/g)。DFT 发现,CO2 的存在通过在 CO2 中的 O 与 Pb 之间形成共价键以及在铝硅酸盐表面形成活性 O,增强了 PbCl2 的吸附稳定性。H2O 增加了 PbCl2 的吸附能,因为 H2O 中的 O 占据了原本与 Cl 形成共价键的活性 Al,而 H 则与 Cl 形成了弱氢键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrothermal synthesized kaolin group lamellar/spongy aluminosilicates for enhanced lead vapor capture.

Developing high-temperature-resistant adsorbents with superior porous properties is crucial for safely disposing of heavy metal-containing solid waste via pyrolysis. We synthesized aluminosilicates hydrothermally and observed that acidic conditions, especially HCl (pH=2.6), favored sponge-like mineral (NC2.6) formation with a specific surface area of 500.31 m²/g and pore volume of 0.986 cm³ /g, while alkaline conditions (pH=12.0) promoted spherical particle growth. NC2.6 exhibited higher adsorption capacity compared to kaolinite and halloysite in the PbCl2 vapor adsorption, reaching a maximum of 137.68 mg/g at 700 ℃ (75.91 % stable). We examined the effect of CO2 and H2O on adsorption efficiency and explored the mechanisms using DFT and GCMC simulations. From GCMC results, CO2 negatively impacted PbCl2 adsorption due to competitive adsorption, while H2O increased adsorption content (144.24 mg/g at 700 ℃) by converting PbCl2 into oxides. DFT revealed the presence of CO2 enhanced the adsorption stability of PbCl2 via the formation of covalent bonds between O in CO2 and Pb, and active O on the aluminosilicate surface. H2O increased PbCl2 adsorption energy, as O in H2O occupied an active Al that originally formed a covalent bond with Cl, while the H formed a weak hydrogen bond with this Cl.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Protaetia brevitarsis larvae produce frass that can be used as an additive to immobilize Cd and improve fertility in alkaline soils" [J Hazard Mater 474 (2024) 134379]. High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms. Atmospheric reactive nitrogen conversion kicks off the co-directional and contra-directional effects on PM2.5-O3 pollution. Disentangling external loadings, hydrodynamics and biogeochemical controls on the fate of nitrate in a coastal embayment. Enhancement of fine particle removal through flue gas cooling in a spray tower with packing materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1