{"title":"预测石油价格波动:整合外部指标和高级回归技术","authors":"","doi":"10.1016/j.resourpol.2024.105263","DOIUrl":null,"url":null,"abstract":"<div><p>The study utilizes external factors to improve the precision of predicting fluctuations in oil prices. Based on the pertinent research, the present research gathers 62 external factors from 2000 to 2021, that indicate the changes in oil need, oil supplies, oil stock, economic basics, monetary metrics, and estimations of unpredictability. The experimental findings suggest that shrinkage techniques provide better predictions for all times, the research indicates that principle component analysis (PCA) regression precisely forecasts oil price variations one month in advance. Shrinkage approaches, in contrast, surpass comparable methods when it comes to prediction for all type timeframes. Moreover, an uncontrolled learning technique known as Principal Component Analysis (PCA) demonstrates better predictive ability when oil prices are falling, while supervised learning methods such as shrinkage methods notably enhance the precision of variability estimation. These results suggest that using sophisticated regression methods will significantly improve the accuracy of oil price projections, hence supporting improved decision-making for legislators and traders.</p></div>","PeriodicalId":20970,"journal":{"name":"Resources Policy","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting oil price fluctuations: Integrating external indicators and advanced regression techniques\",\"authors\":\"\",\"doi\":\"10.1016/j.resourpol.2024.105263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study utilizes external factors to improve the precision of predicting fluctuations in oil prices. Based on the pertinent research, the present research gathers 62 external factors from 2000 to 2021, that indicate the changes in oil need, oil supplies, oil stock, economic basics, monetary metrics, and estimations of unpredictability. The experimental findings suggest that shrinkage techniques provide better predictions for all times, the research indicates that principle component analysis (PCA) regression precisely forecasts oil price variations one month in advance. Shrinkage approaches, in contrast, surpass comparable methods when it comes to prediction for all type timeframes. Moreover, an uncontrolled learning technique known as Principal Component Analysis (PCA) demonstrates better predictive ability when oil prices are falling, while supervised learning methods such as shrinkage methods notably enhance the precision of variability estimation. These results suggest that using sophisticated regression methods will significantly improve the accuracy of oil price projections, hence supporting improved decision-making for legislators and traders.</p></div>\",\"PeriodicalId\":20970,\"journal\":{\"name\":\"Resources Policy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Policy\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301420724006305\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301420724006305","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
The study utilizes external factors to improve the precision of predicting fluctuations in oil prices. Based on the pertinent research, the present research gathers 62 external factors from 2000 to 2021, that indicate the changes in oil need, oil supplies, oil stock, economic basics, monetary metrics, and estimations of unpredictability. The experimental findings suggest that shrinkage techniques provide better predictions for all times, the research indicates that principle component analysis (PCA) regression precisely forecasts oil price variations one month in advance. Shrinkage approaches, in contrast, surpass comparable methods when it comes to prediction for all type timeframes. Moreover, an uncontrolled learning technique known as Principal Component Analysis (PCA) demonstrates better predictive ability when oil prices are falling, while supervised learning methods such as shrinkage methods notably enhance the precision of variability estimation. These results suggest that using sophisticated regression methods will significantly improve the accuracy of oil price projections, hence supporting improved decision-making for legislators and traders.
期刊介绍:
Resources Policy is an international journal focused on the economics and policy aspects of mineral and fossil fuel extraction, production, and utilization. It targets individuals in academia, government, and industry. The journal seeks original research submissions analyzing public policy, economics, social science, geography, and finance in the fields of mining, non-fuel minerals, energy minerals, fossil fuels, and metals. Mineral economics topics covered include mineral market analysis, price analysis, project evaluation, mining and sustainable development, mineral resource rents, resource curse, mineral wealth and corruption, mineral taxation and regulation, strategic minerals and their supply, and the impact of mineral development on local communities and indigenous populations. The journal specifically excludes papers with agriculture, forestry, or fisheries as their primary focus.