Sharafadeen Gbadamasi , Suraj Loomba , Muhammad Haris , Muhammad Waqas Khan , Ashakiran Maibam , Seyed Mahdi Mousavi , Sofiu Mahmud , Lars Thomsen , Anton Tadich , Ravichandar Babarao , Jian Xian , Nasir Mahmood
{"title":"打破 MXenes 在海水中驱动安培级选择性氧进化反应的不活跃性","authors":"Sharafadeen Gbadamasi , Suraj Loomba , Muhammad Haris , Muhammad Waqas Khan , Ashakiran Maibam , Seyed Mahdi Mousavi , Sofiu Mahmud , Lars Thomsen , Anton Tadich , Ravichandar Babarao , Jian Xian , Nasir Mahmood","doi":"10.1016/j.mser.2024.100835","DOIUrl":null,"url":null,"abstract":"<div><p>The limited activity and stability of conventional anodes in seawater have posed a significant obstacle to sustainable green hydrogen production directly from seawater via electrolysis. To address these challenges, we engineered Ti<sub>3</sub>C<sub>2</sub>Tx-MXene by incorporating iron and boron into its matrix (tagged FBT) for selective oxygen evolution reaction (OER). Positioning B underneath the top layer induces charge disparity on the Fe-sites, which influences the subsequent growth of the ZIF-67 metal-organic framework (MOF) on the MXene surface through Fe-O-Co ionic bonds. DFT calculations reveal a favorable binding energy of −2.30 eV at the heterointerface for ZIF-67 adsorption to the surface of FBT via O-Co bond, a shortened bond length of 1.94 Å, confirming the formation of ionic bonds. These ionic bonds tune the active sites for an enhanced and selective OER over chlorine evolution reaction (CER), preventing active Fe species' leaching and ensuring stability at >1.56 A cm<sup>−2</sup> in 6 M alkaline seawater over 370 hours. Further, FBT and ZIF-67/FBT require low overpotentials of 521.2 and 508 mV, respectively, to deliver 1 A cm<sup>−2</sup> in 6 M alkaline seawater. Our findings demonstrate a robust strategy to significantly expand the potential of MXenes from simple conductive substrates to efficient OER catalysts for seawater splitting and beyond.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100835"},"PeriodicalIF":31.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927796X24000652/pdfft?md5=1569b31ee3a48ea90badcc346bd8086b&pid=1-s2.0-S0927796X24000652-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Breaking the inactivity of MXenes to drive Ampere-level selective oxygen evolution reaction in seawater\",\"authors\":\"Sharafadeen Gbadamasi , Suraj Loomba , Muhammad Haris , Muhammad Waqas Khan , Ashakiran Maibam , Seyed Mahdi Mousavi , Sofiu Mahmud , Lars Thomsen , Anton Tadich , Ravichandar Babarao , Jian Xian , Nasir Mahmood\",\"doi\":\"10.1016/j.mser.2024.100835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The limited activity and stability of conventional anodes in seawater have posed a significant obstacle to sustainable green hydrogen production directly from seawater via electrolysis. To address these challenges, we engineered Ti<sub>3</sub>C<sub>2</sub>Tx-MXene by incorporating iron and boron into its matrix (tagged FBT) for selective oxygen evolution reaction (OER). Positioning B underneath the top layer induces charge disparity on the Fe-sites, which influences the subsequent growth of the ZIF-67 metal-organic framework (MOF) on the MXene surface through Fe-O-Co ionic bonds. DFT calculations reveal a favorable binding energy of −2.30 eV at the heterointerface for ZIF-67 adsorption to the surface of FBT via O-Co bond, a shortened bond length of 1.94 Å, confirming the formation of ionic bonds. These ionic bonds tune the active sites for an enhanced and selective OER over chlorine evolution reaction (CER), preventing active Fe species' leaching and ensuring stability at >1.56 A cm<sup>−2</sup> in 6 M alkaline seawater over 370 hours. Further, FBT and ZIF-67/FBT require low overpotentials of 521.2 and 508 mV, respectively, to deliver 1 A cm<sup>−2</sup> in 6 M alkaline seawater. Our findings demonstrate a robust strategy to significantly expand the potential of MXenes from simple conductive substrates to efficient OER catalysts for seawater splitting and beyond.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"160 \",\"pages\":\"Article 100835\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000652/pdfft?md5=1569b31ee3a48ea90badcc346bd8086b&pid=1-s2.0-S0927796X24000652-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000652\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000652","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
传统阳极在海水中的活性和稳定性有限,这严重阻碍了通过电解直接从海水中生产可持续的绿色氢气。为了应对这些挑战,我们在 Ti3C2Tx-MXene 的基体中加入了铁和硼(标记为 FBT),以进行选择性氧进化反应(OER)。将硼置于顶层之下会导致铁位上的电荷差异,从而通过铁-氧-钴离子键影响 ZIF-67 金属有机框架(MOF)在 MXene 表面的后续生长。DFT 计算显示,ZIF-67 通过 O-Co 键吸附到 FBT 表面时,在异质界面上的结合能为 -2.30 eV,键长缩短为 1.94 Å,这证实了离子键的形成。这些离子键调整了活性位点,增强了氯进化反应(CER)的选择性 OER,防止了活性铁物种的浸出,并确保了在 6 M 碱性海水中 370 小时内 1.56 A cm-2 的稳定性。此外,FBT 和 ZIF-67/FBT 分别需要 521.2 mV 和 508 mV 的低过电位,才能在 6 M 碱海水中达到 1 A cm-2。我们的研究结果表明了一种稳健的策略,可以将 MXenes 的潜力从简单的导电基底大幅扩展到高效的 OER 催化剂,用于海水分离及其他用途。
Breaking the inactivity of MXenes to drive Ampere-level selective oxygen evolution reaction in seawater
The limited activity and stability of conventional anodes in seawater have posed a significant obstacle to sustainable green hydrogen production directly from seawater via electrolysis. To address these challenges, we engineered Ti3C2Tx-MXene by incorporating iron and boron into its matrix (tagged FBT) for selective oxygen evolution reaction (OER). Positioning B underneath the top layer induces charge disparity on the Fe-sites, which influences the subsequent growth of the ZIF-67 metal-organic framework (MOF) on the MXene surface through Fe-O-Co ionic bonds. DFT calculations reveal a favorable binding energy of −2.30 eV at the heterointerface for ZIF-67 adsorption to the surface of FBT via O-Co bond, a shortened bond length of 1.94 Å, confirming the formation of ionic bonds. These ionic bonds tune the active sites for an enhanced and selective OER over chlorine evolution reaction (CER), preventing active Fe species' leaching and ensuring stability at >1.56 A cm−2 in 6 M alkaline seawater over 370 hours. Further, FBT and ZIF-67/FBT require low overpotentials of 521.2 and 508 mV, respectively, to deliver 1 A cm−2 in 6 M alkaline seawater. Our findings demonstrate a robust strategy to significantly expand the potential of MXenes from simple conductive substrates to efficient OER catalysts for seawater splitting and beyond.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.