使用 CH3COCH3/Ar 混合气体的高密度等离子体蚀刻钴薄膜的特性

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2024-08-18 DOI:10.1016/j.mee.2024.112260
{"title":"使用 CH3COCH3/Ar 混合气体的高密度等离子体蚀刻钴薄膜的特性","authors":"","doi":"10.1016/j.mee.2024.112260","DOIUrl":null,"url":null,"abstract":"<div><p>Co thin films masked with SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub> layers were etched using a high-density plasma of a CH<sub>3</sub>COCH<sub>3</sub>/Ar gas mixture. As the concentration of CH<sub>3</sub>COCH<sub>3</sub> increased, the etch rate of the Co thin films and etch selectivity decreased. Optimal etch profiles of the Co films without redeposition were achieved owing to the formation of Co compounds and a passivation layer, which facilitated a high degree of anisotropy. Moreover, the etch characteristics of the Co films were examined using the ICP RF power, dc-bias voltage to the substrate, and process pressure. The active species in plasmas and Co compounds formed during etching were investigated using optical emission spectroscopy and X-ray photoelectron spectroscopy. Finally, the Co thin films patterned with 300 nm lines were etched using a CH<sub>3</sub>COCH<sub>3</sub>/Ar gas mixture under optimized etch conditions. The findings suggest that a CH<sub>3</sub>COCH<sub>3</sub>/Ar gas mixture can serve as an effective etch gas for fabricating dry-etched Co thin films.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Etch characteristics of cobalt thin films using high density plasma of CH3COCH3/Ar gas mixture\",\"authors\":\"\",\"doi\":\"10.1016/j.mee.2024.112260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Co thin films masked with SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub> layers were etched using a high-density plasma of a CH<sub>3</sub>COCH<sub>3</sub>/Ar gas mixture. As the concentration of CH<sub>3</sub>COCH<sub>3</sub> increased, the etch rate of the Co thin films and etch selectivity decreased. Optimal etch profiles of the Co films without redeposition were achieved owing to the formation of Co compounds and a passivation layer, which facilitated a high degree of anisotropy. Moreover, the etch characteristics of the Co films were examined using the ICP RF power, dc-bias voltage to the substrate, and process pressure. The active species in plasmas and Co compounds formed during etching were investigated using optical emission spectroscopy and X-ray photoelectron spectroscopy. Finally, the Co thin films patterned with 300 nm lines were etched using a CH<sub>3</sub>COCH<sub>3</sub>/Ar gas mixture under optimized etch conditions. The findings suggest that a CH<sub>3</sub>COCH<sub>3</sub>/Ar gas mixture can serve as an effective etch gas for fabricating dry-etched Co thin films.</p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931724001291\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001291","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

使用 CH3COCH3/Ar 混合气体的高密度等离子体对掩蔽有 SiO2/Si3N4 层的钴薄膜进行了蚀刻。随着 CH3COCH3 浓度的增加,Co 薄膜的蚀刻速率和蚀刻选择性降低。由于形成了 Co 化合物和钝化层,促进了高度各向异性,因此实现了无需再沉积的最佳 Co 薄膜蚀刻曲线。此外,还利用 ICP 射频功率、基底直流偏置电压和工艺压力检测了 Co 薄膜的蚀刻特性。利用光学发射光谱和 X 射线光电子能谱研究了等离子体中的活性物种和蚀刻过程中形成的 Co 化合物。最后,在优化的蚀刻条件下,使用 CH3COCH3/Ar 混合气体对刻有 300 nm 线的 Co 薄膜进行了蚀刻。研究结果表明,CH3COCH3/Ar 混合气体可作为制造干蚀刻 Co 薄膜的有效蚀刻气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Etch characteristics of cobalt thin films using high density plasma of CH3COCH3/Ar gas mixture

Co thin films masked with SiO2/Si3N4 layers were etched using a high-density plasma of a CH3COCH3/Ar gas mixture. As the concentration of CH3COCH3 increased, the etch rate of the Co thin films and etch selectivity decreased. Optimal etch profiles of the Co films without redeposition were achieved owing to the formation of Co compounds and a passivation layer, which facilitated a high degree of anisotropy. Moreover, the etch characteristics of the Co films were examined using the ICP RF power, dc-bias voltage to the substrate, and process pressure. The active species in plasmas and Co compounds formed during etching were investigated using optical emission spectroscopy and X-ray photoelectron spectroscopy. Finally, the Co thin films patterned with 300 nm lines were etched using a CH3COCH3/Ar gas mixture under optimized etch conditions. The findings suggest that a CH3COCH3/Ar gas mixture can serve as an effective etch gas for fabricating dry-etched Co thin films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Editorial Board High density nanofluidic channels by self-sealing for metallic nanoparticles detection Etch of nano-TSV with smooth sidewall and excellent selection ratio for backside power delivery network Development of an emulator of the sustainable energy harvesting pad system on a bike lane for charging lithium batteries Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1