大范围人脸变形下的人脸特征点检测

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-08-01 DOI:10.1016/j.jvcir.2024.104264
Nora Algaraawi , Tim Morris , Timothy F. Cootes
{"title":"大范围人脸变形下的人脸特征点检测","authors":"Nora Algaraawi ,&nbsp;Tim Morris ,&nbsp;Timothy F. Cootes","doi":"10.1016/j.jvcir.2024.104264","DOIUrl":null,"url":null,"abstract":"<div><p>Facial Feature Point Detection (FFPD) plays a significant role in several face analysis tasks such as feature extraction and classification. This paper presents a Fully Automatic FFPD system using the application of Random Forest Regression Voting in a Constrained Local Model (RFRV-CLM) framework. A global detector is used to find the approximate positions of the facial region and eye centers. A sequence of local RFRV-CLMs are used to locate a detailed set of points around the facial features. Both global and local models use Random Forest Regression to vote for optimal positions. The system is evaluated in the task of facial expression localization using five different facial expression databases of different characteristics including age, intensity, 6-basic expressions, 22 compound expressions, static and dynamic images, and deliberate and spontaneous expressions. Quantitative results of the evaluation of automatic point localization against manual points (ground truth) demonstrated that the results of the proposed approach are encouraging and outperform the results of alternative techniques tested on the same databases.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"103 ","pages":"Article 104264"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial feature point detection under large range of face deformations\",\"authors\":\"Nora Algaraawi ,&nbsp;Tim Morris ,&nbsp;Timothy F. Cootes\",\"doi\":\"10.1016/j.jvcir.2024.104264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Facial Feature Point Detection (FFPD) plays a significant role in several face analysis tasks such as feature extraction and classification. This paper presents a Fully Automatic FFPD system using the application of Random Forest Regression Voting in a Constrained Local Model (RFRV-CLM) framework. A global detector is used to find the approximate positions of the facial region and eye centers. A sequence of local RFRV-CLMs are used to locate a detailed set of points around the facial features. Both global and local models use Random Forest Regression to vote for optimal positions. The system is evaluated in the task of facial expression localization using five different facial expression databases of different characteristics including age, intensity, 6-basic expressions, 22 compound expressions, static and dynamic images, and deliberate and spontaneous expressions. Quantitative results of the evaluation of automatic point localization against manual points (ground truth) demonstrated that the results of the proposed approach are encouraging and outperform the results of alternative techniques tested on the same databases.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"103 \",\"pages\":\"Article 104264\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002207\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

面部特征点检测(FFPD)在特征提取和分类等多项人脸分析任务中发挥着重要作用。本文介绍了一种全自动人脸特征点检测系统,该系统采用了受限局部模型中的随机森林回归投票(RFRV-CLM)框架。全局检测器用于找到面部区域和眼睛中心的大致位置。一系列局部 RFRV-CLM 用于定位面部特征周围的详细点集。全局和局部模型都使用随机森林回归来投票选出最佳位置。在面部表情定位任务中,使用五个不同的面部表情数据库对该系统进行了评估,这些数据库具有不同的特征,包括年龄、强度、6 种基本表情、22 种复合表情、静态和动态图像、刻意和自发表情。对照人工点(地面实况)对自动点定位的定量评估结果表明,所提出方法的结果令人鼓舞,优于在相同数据库上测试的其他技术的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial feature point detection under large range of face deformations

Facial Feature Point Detection (FFPD) plays a significant role in several face analysis tasks such as feature extraction and classification. This paper presents a Fully Automatic FFPD system using the application of Random Forest Regression Voting in a Constrained Local Model (RFRV-CLM) framework. A global detector is used to find the approximate positions of the facial region and eye centers. A sequence of local RFRV-CLMs are used to locate a detailed set of points around the facial features. Both global and local models use Random Forest Regression to vote for optimal positions. The system is evaluated in the task of facial expression localization using five different facial expression databases of different characteristics including age, intensity, 6-basic expressions, 22 compound expressions, static and dynamic images, and deliberate and spontaneous expressions. Quantitative results of the evaluation of automatic point localization against manual points (ground truth) demonstrated that the results of the proposed approach are encouraging and outperform the results of alternative techniques tested on the same databases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT A memory access number constraint-based string prediction technique for high throughput SCC implemented in AVS3 Faster-slow network fused with enhanced fine-grained features for action recognition Lightweight macro-pixel quality enhancement network for light field images compressed by versatile video coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1