通过对次昼夜尺度海气相互作用进行参数化改进大气-海洋耦合模拟

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-08-21 DOI:10.1029/2023MS003903
K. Wang, S. Zhang, Y. Jin, C. Zhu, Z. Song, Y. Gao, G. Yang
{"title":"通过对次昼夜尺度海气相互作用进行参数化改进大气-海洋耦合模拟","authors":"K. Wang,&nbsp;S. Zhang,&nbsp;Y. Jin,&nbsp;C. Zhu,&nbsp;Z. Song,&nbsp;Y. Gao,&nbsp;G. Yang","doi":"10.1029/2023MS003903","DOIUrl":null,"url":null,"abstract":"<p>The atmosphere-ocean is a highly coupled system with significant diurnal and hourly variations. However, current coupled models usually lack sub-diurnal scale processes at the air-sea interface due to the finite vertical resolution for ocean discretization. Previous modeling studies showed that sub-diurnal scale air-sea interaction processes are important for ocean mixing. Here, by designing an integrated sub-diurnal parameterization (ISDP) scheme which combines different temperature profiling functions, we stress sub-diurnal air-sea interactions to better represent the local ocean mixing. This scheme has been implemented into two coupled models which contributed to the Climate Model Intercomparison Project (CMIP), referenced by the Intergovernmental Panel on Climate Change—Community Earth System Model and Coupled Model version 2. The results show that the ISDP scheme improves model simulations with better climatology and more realistic spectra, especially in the tropics and North Pacific Ocean. With the scheme, the tropical cold tongue bias is significantly relaxed by reducing the overestimation of ocean upper mixing, and the cold bias of North Pacific Ocean is reduced due to the improvement on currents and net heat fluxes. Our scheme may help better the simulation and prediction skills of coupled models when their horizontal resolution becomes fine but vertical resolution remains relatively coarse as it describes high-frequency air-sea interactions more realistically.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003903","citationCount":"0","resultStr":"{\"title\":\"Improved Atmosphere-Ocean Coupled Simulation by Parameterizing Sub-Diurnal Scale Air-Sea Interactions\",\"authors\":\"K. Wang,&nbsp;S. Zhang,&nbsp;Y. Jin,&nbsp;C. Zhu,&nbsp;Z. Song,&nbsp;Y. Gao,&nbsp;G. Yang\",\"doi\":\"10.1029/2023MS003903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The atmosphere-ocean is a highly coupled system with significant diurnal and hourly variations. However, current coupled models usually lack sub-diurnal scale processes at the air-sea interface due to the finite vertical resolution for ocean discretization. Previous modeling studies showed that sub-diurnal scale air-sea interaction processes are important for ocean mixing. Here, by designing an integrated sub-diurnal parameterization (ISDP) scheme which combines different temperature profiling functions, we stress sub-diurnal air-sea interactions to better represent the local ocean mixing. This scheme has been implemented into two coupled models which contributed to the Climate Model Intercomparison Project (CMIP), referenced by the Intergovernmental Panel on Climate Change—Community Earth System Model and Coupled Model version 2. The results show that the ISDP scheme improves model simulations with better climatology and more realistic spectra, especially in the tropics and North Pacific Ocean. With the scheme, the tropical cold tongue bias is significantly relaxed by reducing the overestimation of ocean upper mixing, and the cold bias of North Pacific Ocean is reduced due to the improvement on currents and net heat fluxes. Our scheme may help better the simulation and prediction skills of coupled models when their horizontal resolution becomes fine but vertical resolution remains relatively coarse as it describes high-frequency air-sea interactions more realistically.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003903\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003903\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003903","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气-海洋是一个高度耦合的系统,具有显著的日变化和小时变化。然而,由于海洋离散化的垂直分辨率有限,目前的耦合模式通常缺乏海气界面的亚昼夜尺度过程。以往的建模研究表明,亚昼夜尺度的海气相互作用过程对海洋混合非常重要。在此,我们通过设计一种结合了不同温度剖面函数的综合亚日参数化(ISDP)方案,强调亚日尺度的海气相互作用,以更好地表示局地海洋混合。该方案已在两个耦合模式中实施,这两个模式为气候模式相互比较项目(CMIP)做出了贡献,并被政府间气候变化专门委员会--地球系统模式和耦合模式版本 2 引用。结果表明,ISDP 方案改进了模型模拟,气候学效果更好,光谱更逼真,尤其是在热带和北太平洋地区。采用该方案后,由于减少了对海洋上层混合的高估,热带冷舌偏差明显减小;由于改善了海流和净热通量,北太平洋的冷偏差也有所减小。当耦合模式的水平分辨率变得精细但垂直分辨率仍然相对粗糙时,我们的方案可能有助于提高其模拟和预测能力,因为它能更真实地描述高频海气相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Atmosphere-Ocean Coupled Simulation by Parameterizing Sub-Diurnal Scale Air-Sea Interactions

The atmosphere-ocean is a highly coupled system with significant diurnal and hourly variations. However, current coupled models usually lack sub-diurnal scale processes at the air-sea interface due to the finite vertical resolution for ocean discretization. Previous modeling studies showed that sub-diurnal scale air-sea interaction processes are important for ocean mixing. Here, by designing an integrated sub-diurnal parameterization (ISDP) scheme which combines different temperature profiling functions, we stress sub-diurnal air-sea interactions to better represent the local ocean mixing. This scheme has been implemented into two coupled models which contributed to the Climate Model Intercomparison Project (CMIP), referenced by the Intergovernmental Panel on Climate Change—Community Earth System Model and Coupled Model version 2. The results show that the ISDP scheme improves model simulations with better climatology and more realistic spectra, especially in the tropics and North Pacific Ocean. With the scheme, the tropical cold tongue bias is significantly relaxed by reducing the overestimation of ocean upper mixing, and the cold bias of North Pacific Ocean is reduced due to the improvement on currents and net heat fluxes. Our scheme may help better the simulation and prediction skills of coupled models when their horizontal resolution becomes fine but vertical resolution remains relatively coarse as it describes high-frequency air-sea interactions more realistically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
Reconstructing the Tropical Pacific Upper Ocean Using Online Data Assimilation With a Deep Learning Model Standardized Daily High-Resolution Large-Eddy Simulations of the Arctic Boundary Layer and Clouds During the Complete MOSAiC Drift A Simple Model for the Emergence of Relaxation-Oscillator Convection Online Learning of Entrainment Closures in a Hybrid Machine Learning Parameterization A Refined Zero-Buoyancy Plume Model for Large-Scale Atmospheric Profiles and Anvil Clouds in Radiative-Convective Equilibrium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1