Gabriel Innocenti, Maureen Obara, Bibiana Costa, Henning Jacobsen, Maeva Katzmarzyk, Luka Cicin-Sain, Ulrich Kalinke, Marco Galardini
{"title":"从大型基因组集合中实时识别 SARS-CoV-2 中的表观相互作用","authors":"Gabriel Innocenti, Maureen Obara, Bibiana Costa, Henning Jacobsen, Maeva Katzmarzyk, Luka Cicin-Sain, Ulrich Kalinke, Marco Galardini","doi":"10.1186/s13059-024-03355-y","DOIUrl":null,"url":null,"abstract":"The emergence of the SARS-CoV-2 virus has highlighted the importance of genomic epidemiology in understanding the evolution of pathogens and guiding public health interventions. The Omicron variant in particular has underscored the role of epistasis in the evolution of lineages with both higher infectivity and immune escape, and therefore the necessity to update surveillance pipelines to detect them early on. In this study, we apply a method based on mutual information between positions in a multiple sequence alignment, which is capable of scaling up to millions of samples. We show how it can reliably predict known experimentally validated epistatic interactions, even when using as little as 10,000 sequences, which opens the possibility of making it a near real-time prediction system. We test this possibility by modifying the method to account for the sample collection date and apply it retrospectively to multiple sequence alignments for each month between March 2020 and March 2023. We detected a cornerstone epistatic interaction in the Spike protein between codons 498 and 501 as soon as seven samples with a double mutation were present in the dataset, thus demonstrating the method’s sensitivity. We test the ability of the method to make inferences about emerging interactions by testing candidates predicted after March 2023, which we validate experimentally. We show how known epistatic interaction in SARS-CoV-2 can be detected with high sensitivity, and how emerging ones can be quickly prioritized for experimental validation, an approach that could be implemented downstream of pandemic genome sequencing efforts.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"66 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time identification of epistatic interactions in SARS-CoV-2 from large genome collections\",\"authors\":\"Gabriel Innocenti, Maureen Obara, Bibiana Costa, Henning Jacobsen, Maeva Katzmarzyk, Luka Cicin-Sain, Ulrich Kalinke, Marco Galardini\",\"doi\":\"10.1186/s13059-024-03355-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of the SARS-CoV-2 virus has highlighted the importance of genomic epidemiology in understanding the evolution of pathogens and guiding public health interventions. The Omicron variant in particular has underscored the role of epistasis in the evolution of lineages with both higher infectivity and immune escape, and therefore the necessity to update surveillance pipelines to detect them early on. In this study, we apply a method based on mutual information between positions in a multiple sequence alignment, which is capable of scaling up to millions of samples. We show how it can reliably predict known experimentally validated epistatic interactions, even when using as little as 10,000 sequences, which opens the possibility of making it a near real-time prediction system. We test this possibility by modifying the method to account for the sample collection date and apply it retrospectively to multiple sequence alignments for each month between March 2020 and March 2023. We detected a cornerstone epistatic interaction in the Spike protein between codons 498 and 501 as soon as seven samples with a double mutation were present in the dataset, thus demonstrating the method’s sensitivity. We test the ability of the method to make inferences about emerging interactions by testing candidates predicted after March 2023, which we validate experimentally. We show how known epistatic interaction in SARS-CoV-2 can be detected with high sensitivity, and how emerging ones can be quickly prioritized for experimental validation, an approach that could be implemented downstream of pandemic genome sequencing efforts.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03355-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03355-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Real-time identification of epistatic interactions in SARS-CoV-2 from large genome collections
The emergence of the SARS-CoV-2 virus has highlighted the importance of genomic epidemiology in understanding the evolution of pathogens and guiding public health interventions. The Omicron variant in particular has underscored the role of epistasis in the evolution of lineages with both higher infectivity and immune escape, and therefore the necessity to update surveillance pipelines to detect them early on. In this study, we apply a method based on mutual information between positions in a multiple sequence alignment, which is capable of scaling up to millions of samples. We show how it can reliably predict known experimentally validated epistatic interactions, even when using as little as 10,000 sequences, which opens the possibility of making it a near real-time prediction system. We test this possibility by modifying the method to account for the sample collection date and apply it retrospectively to multiple sequence alignments for each month between March 2020 and March 2023. We detected a cornerstone epistatic interaction in the Spike protein between codons 498 and 501 as soon as seven samples with a double mutation were present in the dataset, thus demonstrating the method’s sensitivity. We test the ability of the method to make inferences about emerging interactions by testing candidates predicted after March 2023, which we validate experimentally. We show how known epistatic interaction in SARS-CoV-2 can be detected with high sensitivity, and how emerging ones can be quickly prioritized for experimental validation, an approach that could be implemented downstream of pandemic genome sequencing efforts.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.