{"title":"PB-GPT:基于 GPT 的创新型蛋白质骨架生成模型","authors":"Xiaoping Min, Yiyang Liao, Xiao Chen, Qianli Yang, Junjie Ying, Jiajun Zou, Chongzhou Yang, Jun Zhang, Shengxiang Ge, Ningshao Xia","doi":"10.1016/j.str.2024.07.016","DOIUrl":null,"url":null,"abstract":"<p>With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.</p>","PeriodicalId":22168,"journal":{"name":"Structure","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PB-GPT: An innovative GPT-based model for protein backbone generation\",\"authors\":\"Xiaoping Min, Yiyang Liao, Xiao Chen, Qianli Yang, Junjie Ying, Jiajun Zou, Chongzhou Yang, Jun Zhang, Shengxiang Ge, Ningshao Xia\",\"doi\":\"10.1016/j.str.2024.07.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.</p>\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.07.016\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.07.016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PB-GPT: An innovative GPT-based model for protein backbone generation
With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.