中等自旋 Au3Fe1/Mo 单原子合金天线反应器上的等离子体诱导光催化固氮作用

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-08-20 DOI:10.1016/j.checat.2024.101083
Bing-Hao Wang, Biao Hu, Guang-Hui Chen, Xiong Wang, Sheng Tian, Yang Li, Xing-Sheng Hu, Huijuan Wang, Chak-Tong Au, Li-Long Jiang, Lang Chen, Shuang-Feng Yin
{"title":"中等自旋 Au3Fe1/Mo 单原子合金天线反应器上的等离子体诱导光催化固氮作用","authors":"Bing-Hao Wang, Biao Hu, Guang-Hui Chen, Xiong Wang, Sheng Tian, Yang Li, Xing-Sheng Hu, Huijuan Wang, Chak-Tong Au, Li-Long Jiang, Lang Chen, Shuang-Feng Yin","doi":"10.1016/j.checat.2024.101083","DOIUrl":null,"url":null,"abstract":"<p>Developing photocatalysts with active sites that have appropriate interactions with both N<sub>2</sub> and reactive intermediates has proved to be feasible for direct nitrogen reduction but is still a formidable challenge. Herein, a medium-spin Au<sub>3</sub>Fe<sub>1</sub>/Mo single-atom alloy photocatalyst with optical antenna structure is fabricated through an alloying strategy. Fe atoms of a medium-spin state anchored on Au nanoparticles at the single-atom level via Au–Fe bonding is confirmed by combined characterizations of aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM), X-ray absorption fine structure (XAFS), and Mössbauer spectroscopic techniques. With strong Mo-Fe-Au electronic interactions, the Fe sites act as intrinsic centers apt for nitrogen adsorption and activation, which is conducive to the preferential cleavage of the N≡N bond and modulate adsorption of reactive intermediates. Due to synergistic effect of Au nanoparticles acting as optical antennae, the Au<sub>3</sub>Fe<sub>1</sub>/Mo photocatalyst showed excellent photocatalytic nitrogen reduction reaction (pNRR) performance, giving an ammonia formation rate of 484.2 μmol h<sup>−1</sup> g<sup>−1</sup> and solar-to-ammonia (STA) conversion efficiency up to 0.12%.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmon-induced photocatalytic nitrogen fixation on medium-spin Au3Fe1/Mo single-atom alloy antenna reactor\",\"authors\":\"Bing-Hao Wang, Biao Hu, Guang-Hui Chen, Xiong Wang, Sheng Tian, Yang Li, Xing-Sheng Hu, Huijuan Wang, Chak-Tong Au, Li-Long Jiang, Lang Chen, Shuang-Feng Yin\",\"doi\":\"10.1016/j.checat.2024.101083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing photocatalysts with active sites that have appropriate interactions with both N<sub>2</sub> and reactive intermediates has proved to be feasible for direct nitrogen reduction but is still a formidable challenge. Herein, a medium-spin Au<sub>3</sub>Fe<sub>1</sub>/Mo single-atom alloy photocatalyst with optical antenna structure is fabricated through an alloying strategy. Fe atoms of a medium-spin state anchored on Au nanoparticles at the single-atom level via Au–Fe bonding is confirmed by combined characterizations of aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM), X-ray absorption fine structure (XAFS), and Mössbauer spectroscopic techniques. With strong Mo-Fe-Au electronic interactions, the Fe sites act as intrinsic centers apt for nitrogen adsorption and activation, which is conducive to the preferential cleavage of the N≡N bond and modulate adsorption of reactive intermediates. Due to synergistic effect of Au nanoparticles acting as optical antennae, the Au<sub>3</sub>Fe<sub>1</sub>/Mo photocatalyst showed excellent photocatalytic nitrogen reduction reaction (pNRR) performance, giving an ammonia formation rate of 484.2 μmol h<sup>−1</sup> g<sup>−1</sup> and solar-to-ammonia (STA) conversion efficiency up to 0.12%.</p>\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,开发具有能与 N2 和反应性中间产物发生适当相互作用的活性位点的光催化剂对于直接还原氮是可行的,但仍然是一项艰巨的挑战。在此,我们通过合金化策略制造了一种具有光学天线结构的中等自旋 Au3Fe1/Mo 单原子合金光催化剂。通过像差校正高角度环形暗场扫描透射电子显微镜(AC-HAADF-STEM)、X射线吸收精细结构(XAFS)和莫斯鲍尔光谱技术的综合表征,证实了通过金-铁键在单原子水平上锚定在金纳米粒子上的中自旋态铁原子。由于钼-铁-金具有很强的电子相互作用,铁位点成为适合氮吸附和活化的固有中心,有利于优先裂解 N≡N 键并调节反应中间产物的吸附。由于金纳米粒子作为光学天线的协同作用,Au3Fe1/Mo 光催化剂表现出优异的光催化氮还原反应(pNRR)性能,氨生成率达到 484.2 μmol h-1 g-1,太阳能-氨(STA)转换效率高达 0.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasmon-induced photocatalytic nitrogen fixation on medium-spin Au3Fe1/Mo single-atom alloy antenna reactor

Developing photocatalysts with active sites that have appropriate interactions with both N2 and reactive intermediates has proved to be feasible for direct nitrogen reduction but is still a formidable challenge. Herein, a medium-spin Au3Fe1/Mo single-atom alloy photocatalyst with optical antenna structure is fabricated through an alloying strategy. Fe atoms of a medium-spin state anchored on Au nanoparticles at the single-atom level via Au–Fe bonding is confirmed by combined characterizations of aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM), X-ray absorption fine structure (XAFS), and Mössbauer spectroscopic techniques. With strong Mo-Fe-Au electronic interactions, the Fe sites act as intrinsic centers apt for nitrogen adsorption and activation, which is conducive to the preferential cleavage of the N≡N bond and modulate adsorption of reactive intermediates. Due to synergistic effect of Au nanoparticles acting as optical antennae, the Au3Fe1/Mo photocatalyst showed excellent photocatalytic nitrogen reduction reaction (pNRR) performance, giving an ammonia formation rate of 484.2 μmol h−1 g−1 and solar-to-ammonia (STA) conversion efficiency up to 0.12%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Intermittent CO2 electrolysis needs its time in the sun Discovery of the threshold potential that triggers photochemical water oxidation with Ru(II) photosensitizers and MOx catalysts Singly and doubly oxidized carbenes and their applications in catalysis The role of metal nanostructure in ceria-supported catalysts for ammonia oxidation to nitrous oxide Engineering intricacies of implementing single-atom alloy catalysts for low-temperature electrocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1