{"title":"神经肌张力障碍","authors":"Michael S Zandi","doi":"10.1016/B978-0-323-90820-7.00014-8","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromyotonia is continuous peripheral nerve hyper-excitability manifesting in muscle twitching at rest (myokymia), inducible cramps and impaired muscle relaxation, and characterized by EMG findings of spontaneous single motor unit discharges (with doublet, triplet, or multiplet morphology). The disorder may be genetic, acquired, and often in the acquired cases autoimmune. This chapter focuses on autoimmune acquired causes. Autoimmune associations include mainly contactin-associated protein-like 2 (CASPR2) antibody-associated disease (previously termed as VGKC or voltage-gated potassium channel antibody-associated neuromyotonia) (van Sonderen et al., 2016, p. 2), leucine-rich glioma-inactivated 1 (LGI1) antibody disease, the Guillain-Barré syndrome, NMDAR encephalitis (Varley et al., 2019), and IgLON5 (Gaig et al., 2021) disease. Nonimmune associations include radiation-induced plexopathy. An association with myasthenia gravis and other autoimmune disorders, response to plasma exchange (Newsom-Davis and Mills, 1993) and physiologically induced changes in mice injected with patient-derived immunoglobulins led to the discovery of autoantibodies to juxtaparanodal proteins complexed with potassium channels (Shillito et al., 1995). The target of the antibodies is most commonly the CASPR2 protein. The disorder may be paraneoplastic, and a search for and treatment of an underlying tumor is a necessary step. In cases in which there is evidence for an immune cause, then immune suppression, with an emerging role for B cell-depleting therapies, is associated with a good clinical outcome. In parallel, sodium channel blocking drugs remain effective symptomatic therapies.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromyotonia.\",\"authors\":\"Michael S Zandi\",\"doi\":\"10.1016/B978-0-323-90820-7.00014-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuromyotonia is continuous peripheral nerve hyper-excitability manifesting in muscle twitching at rest (myokymia), inducible cramps and impaired muscle relaxation, and characterized by EMG findings of spontaneous single motor unit discharges (with doublet, triplet, or multiplet morphology). The disorder may be genetic, acquired, and often in the acquired cases autoimmune. This chapter focuses on autoimmune acquired causes. Autoimmune associations include mainly contactin-associated protein-like 2 (CASPR2) antibody-associated disease (previously termed as VGKC or voltage-gated potassium channel antibody-associated neuromyotonia) (van Sonderen et al., 2016, p. 2), leucine-rich glioma-inactivated 1 (LGI1) antibody disease, the Guillain-Barré syndrome, NMDAR encephalitis (Varley et al., 2019), and IgLON5 (Gaig et al., 2021) disease. Nonimmune associations include radiation-induced plexopathy. An association with myasthenia gravis and other autoimmune disorders, response to plasma exchange (Newsom-Davis and Mills, 1993) and physiologically induced changes in mice injected with patient-derived immunoglobulins led to the discovery of autoantibodies to juxtaparanodal proteins complexed with potassium channels (Shillito et al., 1995). The target of the antibodies is most commonly the CASPR2 protein. The disorder may be paraneoplastic, and a search for and treatment of an underlying tumor is a necessary step. In cases in which there is evidence for an immune cause, then immune suppression, with an emerging role for B cell-depleting therapies, is associated with a good clinical outcome. In parallel, sodium channel blocking drugs remain effective symptomatic therapies.</p>\",\"PeriodicalId\":12907,\"journal\":{\"name\":\"Handbook of clinical neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of clinical neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/B978-0-323-90820-7.00014-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-323-90820-7.00014-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Neuromyotonia is continuous peripheral nerve hyper-excitability manifesting in muscle twitching at rest (myokymia), inducible cramps and impaired muscle relaxation, and characterized by EMG findings of spontaneous single motor unit discharges (with doublet, triplet, or multiplet morphology). The disorder may be genetic, acquired, and often in the acquired cases autoimmune. This chapter focuses on autoimmune acquired causes. Autoimmune associations include mainly contactin-associated protein-like 2 (CASPR2) antibody-associated disease (previously termed as VGKC or voltage-gated potassium channel antibody-associated neuromyotonia) (van Sonderen et al., 2016, p. 2), leucine-rich glioma-inactivated 1 (LGI1) antibody disease, the Guillain-Barré syndrome, NMDAR encephalitis (Varley et al., 2019), and IgLON5 (Gaig et al., 2021) disease. Nonimmune associations include radiation-induced plexopathy. An association with myasthenia gravis and other autoimmune disorders, response to plasma exchange (Newsom-Davis and Mills, 1993) and physiologically induced changes in mice injected with patient-derived immunoglobulins led to the discovery of autoantibodies to juxtaparanodal proteins complexed with potassium channels (Shillito et al., 1995). The target of the antibodies is most commonly the CASPR2 protein. The disorder may be paraneoplastic, and a search for and treatment of an underlying tumor is a necessary step. In cases in which there is evidence for an immune cause, then immune suppression, with an emerging role for B cell-depleting therapies, is associated with a good clinical outcome. In parallel, sodium channel blocking drugs remain effective symptomatic therapies.
期刊介绍:
The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.