Seong Gyu Kwon, Geon Hue Bae, Joo Hee Hong, Jeong-Woo Choi, June Hyug Choi, Nam Seop Lim, CheolMin Jeon, Nanda Maya Mali, Mee Sook Jun, JaeEun Shin, JinSoo Kim, Eun-Seok Cho, Man-Hoon Han, Ji Won Oh
{"title":"家猪体细胞突变和结构变异的综合分析。","authors":"Seong Gyu Kwon, Geon Hue Bae, Joo Hee Hong, Jeong-Woo Choi, June Hyug Choi, Nam Seop Lim, CheolMin Jeon, Nanda Maya Mali, Mee Sook Jun, JaeEun Shin, JinSoo Kim, Eun-Seok Cho, Man-Hoon Han, Ji Won Oh","doi":"10.1007/s00335-024-10058-z","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding somatic mutations and structural variations in domestic pigs (Sus scrofa domestica) is critical due to their increasing importance as model organisms in biomedical research. In this study, we conducted a comprehensive analysis through whole-genome sequencing of skin, organs, and blood samples. By examining two pig pedigrees, we investigated the inheritance and sharedness of structural variants among fathers, mothers, and offsprings. Utilizing single-cell clonal expansion techniques, we observed significant variations in the number of somatic mutations across different tissues. An in-house developed pipeline enabled precise filtering and analysis of these mutations, resulting in the construction of individual phylogenetic trees for two pigs. These trees explored the developmental relationships between different tissues, revealing insights into clonal expansions from various anatomical locations. This study enhances the understanding of pig genomes, affirming their increasing value in clinical and genomic research, and provides a foundation for future studies in other animals, paralleling previous studies in mice and humans. This approach not only deepens our understanding of mammalian genomic variations but also strengthens the role of pigs as a crucial model in human health and disease research.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"645-656"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of somatic mutations and structural variations in domestic pig.\",\"authors\":\"Seong Gyu Kwon, Geon Hue Bae, Joo Hee Hong, Jeong-Woo Choi, June Hyug Choi, Nam Seop Lim, CheolMin Jeon, Nanda Maya Mali, Mee Sook Jun, JaeEun Shin, JinSoo Kim, Eun-Seok Cho, Man-Hoon Han, Ji Won Oh\",\"doi\":\"10.1007/s00335-024-10058-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding somatic mutations and structural variations in domestic pigs (Sus scrofa domestica) is critical due to their increasing importance as model organisms in biomedical research. In this study, we conducted a comprehensive analysis through whole-genome sequencing of skin, organs, and blood samples. By examining two pig pedigrees, we investigated the inheritance and sharedness of structural variants among fathers, mothers, and offsprings. Utilizing single-cell clonal expansion techniques, we observed significant variations in the number of somatic mutations across different tissues. An in-house developed pipeline enabled precise filtering and analysis of these mutations, resulting in the construction of individual phylogenetic trees for two pigs. These trees explored the developmental relationships between different tissues, revealing insights into clonal expansions from various anatomical locations. This study enhances the understanding of pig genomes, affirming their increasing value in clinical and genomic research, and provides a foundation for future studies in other animals, paralleling previous studies in mice and humans. This approach not only deepens our understanding of mammalian genomic variations but also strengthens the role of pigs as a crucial model in human health and disease research.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\" \",\"pages\":\"645-656\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-024-10058-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-024-10058-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive analysis of somatic mutations and structural variations in domestic pig.
Understanding somatic mutations and structural variations in domestic pigs (Sus scrofa domestica) is critical due to their increasing importance as model organisms in biomedical research. In this study, we conducted a comprehensive analysis through whole-genome sequencing of skin, organs, and blood samples. By examining two pig pedigrees, we investigated the inheritance and sharedness of structural variants among fathers, mothers, and offsprings. Utilizing single-cell clonal expansion techniques, we observed significant variations in the number of somatic mutations across different tissues. An in-house developed pipeline enabled precise filtering and analysis of these mutations, resulting in the construction of individual phylogenetic trees for two pigs. These trees explored the developmental relationships between different tissues, revealing insights into clonal expansions from various anatomical locations. This study enhances the understanding of pig genomes, affirming their increasing value in clinical and genomic research, and provides a foundation for future studies in other animals, paralleling previous studies in mice and humans. This approach not only deepens our understanding of mammalian genomic variations but also strengthens the role of pigs as a crucial model in human health and disease research.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.