Jessica L Chan, Richard S Legro, Esther Eisenberg, Margareta D Pisarska, Nanette Santoro
{"title":"多囊卵巢综合征表型与妊娠和新生儿结局的相关性。","authors":"Jessica L Chan, Richard S Legro, Esther Eisenberg, Margareta D Pisarska, Nanette Santoro","doi":"10.1097/AOG.0000000000005702","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To compare pregnancy and neonatal outcomes in women with hyperandrogenic polycystic ovarian syndrome (PCOS) phenotypes compared with nonhyperandrogenic PCOS phenotypes.</p><p><strong>Methods: </strong>We conducted a retrospective cohort study of participants in the PPCOS (Pregnancy in Polycystic Ovary Syndrome) I and II randomized controlled trials; all of the participants met the National Institutes of Health diagnostic criteria for PCOS and were then sorted into three of the four Rotterdam criteria categories based on medical interview, demographics, physical examination, and laboratory data. The two hyperandrogenic (A and B) Rotterdam categories were compared with the nonhyperandrogenic phenotype of PCOS (phenotype D). Our outcomes of interest were clinical pregnancy, pregnancy loss, live birth, obstetric complications (including preterm labor, preeclampsia, gestational diabetes, intrauterine growth restriction, and premature rupture of membranes), and neonatal outcomes (including jaundice, respiratory distress syndrome, neonatal hospitalization, and neonatal infection).</p><p><strong>Results: </strong>Of the 1,376 participants included in the study, 1,249 (90.8%) had hyperandrogenic PCOS phenotypes compared with 127 (9.2%) nonhyperandrogenic PCOS (nonhyperandrogenic PCOS). Compared with participants with nonhyperandrogenic PCOS, those with hyperandrogenic PCOS had higher body mass index (BMI) (35.5±8.9 vs 31.9±9.3 kg/m 2 , P <.001), fasting insulin (21.6±27.7 vs 14.7±15.0 micro-international units/mL, P <.001), and homeostatic model assessment for insulin resistance score (5.01±9.1 vs 3.4±4.1, P =.0002). Age and race were similar between groups. Months attempting pregnancy were greater in participants with hyperandrogenic PCOS compared with nonhyperandrogenic PCOS (41.8±37.3 vs 33.9±32.0). The proportion of participants who achieved pregnancy (29.9% vs 40.2%, P =.02) and live birth rates (20.1% vs 33.1%, P =.001) were lower among those with hyperandrogenic PCOS compared with nonhyperandrogenic PCOS, although pregnancy loss rates did not differ significantly (23.9% vs 32.3%, P =.06). The hyperandrogenic PCOS group had lower odds of live birth compared with the nonhyperandrogenic PCOS group (odds ratio [OR] 0.51, CI, 0.34-0.76), even after adjusting for BMI (adjusted odds ratio [aOR] 0.59, CI, 0.40-0.89). The hyperandrogenic PCOS group also had lower odds of achieving pregnancy compared with the nonhyperandrogenic PCOS group (OR 0.63, CI, 0.44-0.92); however, this association was no longer significant after adjusting for BMI (aOR 0.74, CI, 0.50-1.10). The overall low prevalence of prenatal complications and neonatal outcomes precluded a meaningful comparison between the two groups.</p><p><strong>Conclusion: </strong>Participants with hyperandrogenic PCOS achieved lower rates of pregnancy and live birth compared with those with nonhyperandrogenic PCOS. Evaluating distinct PCOS phenotypes may allow for individualized guidance regarding the probability of pregnancy and live birth.</p><p><strong>Clinical trials registration: </strong>ClinicalTrials.gov , NCT00068861 and NCT00718186.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Correlation of Polycystic Ovarian Syndrome Phenotypes With Pregnancy and Neonatal Outcomes.\",\"authors\":\"Jessica L Chan, Richard S Legro, Esther Eisenberg, Margareta D Pisarska, Nanette Santoro\",\"doi\":\"10.1097/AOG.0000000000005702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To compare pregnancy and neonatal outcomes in women with hyperandrogenic polycystic ovarian syndrome (PCOS) phenotypes compared with nonhyperandrogenic PCOS phenotypes.</p><p><strong>Methods: </strong>We conducted a retrospective cohort study of participants in the PPCOS (Pregnancy in Polycystic Ovary Syndrome) I and II randomized controlled trials; all of the participants met the National Institutes of Health diagnostic criteria for PCOS and were then sorted into three of the four Rotterdam criteria categories based on medical interview, demographics, physical examination, and laboratory data. The two hyperandrogenic (A and B) Rotterdam categories were compared with the nonhyperandrogenic phenotype of PCOS (phenotype D). Our outcomes of interest were clinical pregnancy, pregnancy loss, live birth, obstetric complications (including preterm labor, preeclampsia, gestational diabetes, intrauterine growth restriction, and premature rupture of membranes), and neonatal outcomes (including jaundice, respiratory distress syndrome, neonatal hospitalization, and neonatal infection).</p><p><strong>Results: </strong>Of the 1,376 participants included in the study, 1,249 (90.8%) had hyperandrogenic PCOS phenotypes compared with 127 (9.2%) nonhyperandrogenic PCOS (nonhyperandrogenic PCOS). Compared with participants with nonhyperandrogenic PCOS, those with hyperandrogenic PCOS had higher body mass index (BMI) (35.5±8.9 vs 31.9±9.3 kg/m 2 , P <.001), fasting insulin (21.6±27.7 vs 14.7±15.0 micro-international units/mL, P <.001), and homeostatic model assessment for insulin resistance score (5.01±9.1 vs 3.4±4.1, P =.0002). Age and race were similar between groups. Months attempting pregnancy were greater in participants with hyperandrogenic PCOS compared with nonhyperandrogenic PCOS (41.8±37.3 vs 33.9±32.0). The proportion of participants who achieved pregnancy (29.9% vs 40.2%, P =.02) and live birth rates (20.1% vs 33.1%, P =.001) were lower among those with hyperandrogenic PCOS compared with nonhyperandrogenic PCOS, although pregnancy loss rates did not differ significantly (23.9% vs 32.3%, P =.06). The hyperandrogenic PCOS group had lower odds of live birth compared with the nonhyperandrogenic PCOS group (odds ratio [OR] 0.51, CI, 0.34-0.76), even after adjusting for BMI (adjusted odds ratio [aOR] 0.59, CI, 0.40-0.89). The hyperandrogenic PCOS group also had lower odds of achieving pregnancy compared with the nonhyperandrogenic PCOS group (OR 0.63, CI, 0.44-0.92); however, this association was no longer significant after adjusting for BMI (aOR 0.74, CI, 0.50-1.10). The overall low prevalence of prenatal complications and neonatal outcomes precluded a meaningful comparison between the two groups.</p><p><strong>Conclusion: </strong>Participants with hyperandrogenic PCOS achieved lower rates of pregnancy and live birth compared with those with nonhyperandrogenic PCOS. Evaluating distinct PCOS phenotypes may allow for individualized guidance regarding the probability of pregnancy and live birth.</p><p><strong>Clinical trials registration: </strong>ClinicalTrials.gov , NCT00068861 and NCT00718186.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/AOG.0000000000005702\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/AOG.0000000000005702","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要比较高雄激素多囊卵巢综合征(PCOS)表型妇女与非高雄激素多囊卵巢综合征表型妇女的妊娠和新生儿结局:我们对 PPCOS(多囊卵巢综合征妊娠)I 和 II 随机对照试验的参与者进行了一项回顾性队列研究;所有参与者均符合美国国立卫生研究院的多囊卵巢综合征诊断标准,然后根据医学访谈、人口统计学、体格检查和实验室数据被分为鹿特丹标准四类中的三类。我们将鹿特丹标准中的两个高雄激素型(A 和 B)与非高雄激素型多囊卵巢综合症表型(表型 D)进行了比较。我们关注的结果包括临床妊娠、妊娠失败、活产、产科并发症(包括早产、子痫前期、妊娠期糖尿病、宫内生长受限和胎膜早破)和新生儿结局(包括黄疸、呼吸窘迫综合征、新生儿住院和新生儿感染):在纳入研究的 1,376 名参与者中,1,249 人(90.8%)具有高雄激素多囊卵巢综合征表型,而 127 人(9.2%)为非高雄激素多囊卵巢综合征(non-hyperandrogenic PCOS)。与非高雄激素多囊卵巢综合征患者相比,高雄激素多囊卵巢综合征患者的体重指数(BMI)较高(35.5±8.9 vs 31.9±9.3 kg/m2,PC结论:高雄激素多囊卵巢综合征患者的怀孕率和活产率低于非高雄激素多囊卵巢综合征患者。对不同的多囊卵巢综合症表型进行评估,可为怀孕和活产概率提供个性化指导:临床试验注册:ClinicalTrials.gov,NCT00068861 和 NCT00718186。
Correlation of Polycystic Ovarian Syndrome Phenotypes With Pregnancy and Neonatal Outcomes.
Objective: To compare pregnancy and neonatal outcomes in women with hyperandrogenic polycystic ovarian syndrome (PCOS) phenotypes compared with nonhyperandrogenic PCOS phenotypes.
Methods: We conducted a retrospective cohort study of participants in the PPCOS (Pregnancy in Polycystic Ovary Syndrome) I and II randomized controlled trials; all of the participants met the National Institutes of Health diagnostic criteria for PCOS and were then sorted into three of the four Rotterdam criteria categories based on medical interview, demographics, physical examination, and laboratory data. The two hyperandrogenic (A and B) Rotterdam categories were compared with the nonhyperandrogenic phenotype of PCOS (phenotype D). Our outcomes of interest were clinical pregnancy, pregnancy loss, live birth, obstetric complications (including preterm labor, preeclampsia, gestational diabetes, intrauterine growth restriction, and premature rupture of membranes), and neonatal outcomes (including jaundice, respiratory distress syndrome, neonatal hospitalization, and neonatal infection).
Results: Of the 1,376 participants included in the study, 1,249 (90.8%) had hyperandrogenic PCOS phenotypes compared with 127 (9.2%) nonhyperandrogenic PCOS (nonhyperandrogenic PCOS). Compared with participants with nonhyperandrogenic PCOS, those with hyperandrogenic PCOS had higher body mass index (BMI) (35.5±8.9 vs 31.9±9.3 kg/m 2 , P <.001), fasting insulin (21.6±27.7 vs 14.7±15.0 micro-international units/mL, P <.001), and homeostatic model assessment for insulin resistance score (5.01±9.1 vs 3.4±4.1, P =.0002). Age and race were similar between groups. Months attempting pregnancy were greater in participants with hyperandrogenic PCOS compared with nonhyperandrogenic PCOS (41.8±37.3 vs 33.9±32.0). The proportion of participants who achieved pregnancy (29.9% vs 40.2%, P =.02) and live birth rates (20.1% vs 33.1%, P =.001) were lower among those with hyperandrogenic PCOS compared with nonhyperandrogenic PCOS, although pregnancy loss rates did not differ significantly (23.9% vs 32.3%, P =.06). The hyperandrogenic PCOS group had lower odds of live birth compared with the nonhyperandrogenic PCOS group (odds ratio [OR] 0.51, CI, 0.34-0.76), even after adjusting for BMI (adjusted odds ratio [aOR] 0.59, CI, 0.40-0.89). The hyperandrogenic PCOS group also had lower odds of achieving pregnancy compared with the nonhyperandrogenic PCOS group (OR 0.63, CI, 0.44-0.92); however, this association was no longer significant after adjusting for BMI (aOR 0.74, CI, 0.50-1.10). The overall low prevalence of prenatal complications and neonatal outcomes precluded a meaningful comparison between the two groups.
Conclusion: Participants with hyperandrogenic PCOS achieved lower rates of pregnancy and live birth compared with those with nonhyperandrogenic PCOS. Evaluating distinct PCOS phenotypes may allow for individualized guidance regarding the probability of pregnancy and live birth.
Clinical trials registration: ClinicalTrials.gov , NCT00068861 and NCT00718186.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.