利用动态古地理模型和明确的地理范围进行系统发育生物地理推断。

IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Systematic Biology Pub Date : 2024-08-23 DOI:10.1093/sysbio/syae051
J Salvador Arias
{"title":"利用动态古地理模型和明确的地理范围进行系统发育生物地理推断。","authors":"J Salvador Arias","doi":"10.1093/sysbio/syae051","DOIUrl":null,"url":null,"abstract":"<p><p>To model distribution ranges, the most popular methods of phylogenetic biogeography divide Earth into a handful of predefined areas. Other methods use explicit geographic ranges, but unfortunately, these methods assume a static Earth, ignoring the effects of plate tectonics and the changes in the landscape. To address this limitation, I propose a method that uses explicit geographic ranges and incorporates a plate motion model and a paleolandscape model directly derived from the models used by geologists in their tectonic and paleogeographic reconstructions. The underlying geographic model is a high-resolution pixelation of a spherical Earth. Biogeographic inference is based on diffusion, approximates the effects of the landscape, uses a time-stratified model to take into account the geographic changes, and directly integrates over all probable histories. By using a simplified stochastic mapping algorithm, it is possible to infer the ancestral locations as well as the distance traveled by the ancestral lineages. For illustration, I applied the method to an empirical phylogeny of the Sapindaceae plants. This example shows that methods based on explicit geographic data, coupled with high-resolution paleogeographic models, can provide detailed reconstructions of the ancestral areas but also include inferences about the probable dispersal paths and diffusion speed across the taxon history. The method is implemented in the program PhyGeo.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic biogeography inference using dynamic paleogeography models and explicit geographic ranges.\",\"authors\":\"J Salvador Arias\",\"doi\":\"10.1093/sysbio/syae051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To model distribution ranges, the most popular methods of phylogenetic biogeography divide Earth into a handful of predefined areas. Other methods use explicit geographic ranges, but unfortunately, these methods assume a static Earth, ignoring the effects of plate tectonics and the changes in the landscape. To address this limitation, I propose a method that uses explicit geographic ranges and incorporates a plate motion model and a paleolandscape model directly derived from the models used by geologists in their tectonic and paleogeographic reconstructions. The underlying geographic model is a high-resolution pixelation of a spherical Earth. Biogeographic inference is based on diffusion, approximates the effects of the landscape, uses a time-stratified model to take into account the geographic changes, and directly integrates over all probable histories. By using a simplified stochastic mapping algorithm, it is possible to infer the ancestral locations as well as the distance traveled by the ancestral lineages. For illustration, I applied the method to an empirical phylogeny of the Sapindaceae plants. This example shows that methods based on explicit geographic data, coupled with high-resolution paleogeographic models, can provide detailed reconstructions of the ancestral areas but also include inferences about the probable dispersal paths and diffusion speed across the taxon history. The method is implemented in the program PhyGeo.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syae051\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了模拟分布范围,最流行的系统发育生物地理学方法将地球划分为少数几个预定义区域。其他方法使用明确的地理范围,但遗憾的是,这些方法假设地球是静态的,忽略了板块构造的影响和地貌的变化。为了解决这一局限性,我提出了一种方法,它使用明确的地理范围,并结合板块运动模型和古地貌模型,这些模型直接来自地质学家在构造和古地理重建中使用的模型。基础地理模型是球形地球的高分辨率像素化。生物地理推断以扩散为基础,近似地貌的影响,使用时间分层模型来考虑地理变化,并直接整合所有可能的历史。通过使用简化的随机绘图算法,可以推断出祖先的位置以及祖先世系所走过的路程。为了说明问题,我将该方法应用于无患子科植物的经验系统发育。这个例子表明,基于明确地理数据的方法与高分辨率古地理模型相结合,不仅能提供祖先地区的详细重建,还能推断出整个类群历史上可能的扩散路径和扩散速度。该方法在 PhyGeo 程序中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phylogenetic biogeography inference using dynamic paleogeography models and explicit geographic ranges.

To model distribution ranges, the most popular methods of phylogenetic biogeography divide Earth into a handful of predefined areas. Other methods use explicit geographic ranges, but unfortunately, these methods assume a static Earth, ignoring the effects of plate tectonics and the changes in the landscape. To address this limitation, I propose a method that uses explicit geographic ranges and incorporates a plate motion model and a paleolandscape model directly derived from the models used by geologists in their tectonic and paleogeographic reconstructions. The underlying geographic model is a high-resolution pixelation of a spherical Earth. Biogeographic inference is based on diffusion, approximates the effects of the landscape, uses a time-stratified model to take into account the geographic changes, and directly integrates over all probable histories. By using a simplified stochastic mapping algorithm, it is possible to infer the ancestral locations as well as the distance traveled by the ancestral lineages. For illustration, I applied the method to an empirical phylogeny of the Sapindaceae plants. This example shows that methods based on explicit geographic data, coupled with high-resolution paleogeographic models, can provide detailed reconstructions of the ancestral areas but also include inferences about the probable dispersal paths and diffusion speed across the taxon history. The method is implemented in the program PhyGeo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic Biology
Systematic Biology 生物-进化生物学
CiteScore
13.00
自引率
7.70%
发文量
70
审稿时长
6-12 weeks
期刊介绍: Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.
期刊最新文献
The limits of the metapopulation: Lineage fragmentation in a widespread terrestrial salamander (Plethodon cinereus) Dating in the Dark: Elevated Substitution Rates in Cave Cockroaches (Blattodea: Nocticolidae) Have Negative Impacts on Molecular Date Estimates. Clockor2: Inferring Global and Local Strict Molecular Clocks Using Root-to-Tip Regression. Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush. Distinguishing Cophylogenetic Signal from Phylogenetic Congruence Clarifies the Interplay Between Evolutionary History and Species Interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1