Donald I A MacLeod, Patrick Cavanagh, Stuart Anstis
{"title":"低水平运动对位置移动的影响。","authors":"Donald I A MacLeod, Patrick Cavanagh, Stuart Anstis","doi":"10.1167/jov.24.8.13","DOIUrl":null,"url":null,"abstract":"<p><p>Motion can produce large changes in the apparent locations of briefly flashed tests presented on or near the motion. These motion-induced position shifts may have a variety of sources. They may be due to a frame effect where the moving pattern provides a frame of reference for the locations of events within it. The motion of the background may act through high-level mechanisms that track its explicit contours or the motion may act on position through the signals from low-level motion detectors. Here we isolate the contribution of low-level motion by eliminating explicit contours and trackable features. In this case, motion still supports a robust shift in probe locations with the shift being in the direction of the motion that follows the probe. Although robust, the magnitude of the shift in our first experiment is about 20% of the shift seen in a previous study with explicit frames and, in the second, about 45% of that found with explicit frames. Clearly, low-level motion alone can produce position shifts although the magnitude is much reduced compared to that seen when high-level mechanisms can contribute.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contribution of low-level motion to position shifts.\",\"authors\":\"Donald I A MacLeod, Patrick Cavanagh, Stuart Anstis\",\"doi\":\"10.1167/jov.24.8.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motion can produce large changes in the apparent locations of briefly flashed tests presented on or near the motion. These motion-induced position shifts may have a variety of sources. They may be due to a frame effect where the moving pattern provides a frame of reference for the locations of events within it. The motion of the background may act through high-level mechanisms that track its explicit contours or the motion may act on position through the signals from low-level motion detectors. Here we isolate the contribution of low-level motion by eliminating explicit contours and trackable features. In this case, motion still supports a robust shift in probe locations with the shift being in the direction of the motion that follows the probe. Although robust, the magnitude of the shift in our first experiment is about 20% of the shift seen in a previous study with explicit frames and, in the second, about 45% of that found with explicit frames. Clearly, low-level motion alone can produce position shifts although the magnitude is much reduced compared to that seen when high-level mechanisms can contribute.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.8.13\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.8.13","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Contribution of low-level motion to position shifts.
Motion can produce large changes in the apparent locations of briefly flashed tests presented on or near the motion. These motion-induced position shifts may have a variety of sources. They may be due to a frame effect where the moving pattern provides a frame of reference for the locations of events within it. The motion of the background may act through high-level mechanisms that track its explicit contours or the motion may act on position through the signals from low-level motion detectors. Here we isolate the contribution of low-level motion by eliminating explicit contours and trackable features. In this case, motion still supports a robust shift in probe locations with the shift being in the direction of the motion that follows the probe. Although robust, the magnitude of the shift in our first experiment is about 20% of the shift seen in a previous study with explicit frames and, in the second, about 45% of that found with explicit frames. Clearly, low-level motion alone can produce position shifts although the magnitude is much reduced compared to that seen when high-level mechanisms can contribute.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.